
Application layout

Contents1

Requirements . 22

Static files . 23

Variable files . 34

Upgrade, rollback, reset and uninstall 45

Security and privacy considerations 56

Miscellaneous . 67

Writing application bundles . 68

Unresolved design questions . 69

Does data reset uninstall apps? 610

Appendix: comparison with other systems 611

Desktop Linux (packaged apps) 612

Android . 813

systemd “revisiting Linux systems”proposal 814

References . 915

Application bundles in the Apertis system may require several categories of16

storage, and to be able to write correct AppArmor profiles, we need to be able17

to restrict each of those categories of storage to a known directory.18

This document is intended to update and partially supersede discussions of19

storage locations in theapplications1 andsystem updates and rollback2 design20

documents.21

This document describes and provides rationale for the layout of and file types22

within an application bundle, suggested future directions, and details of func-23

tionality that is not necessarily long-term stable.24

Requirements25

Static files26

• Most application bundles will contain one or more executable programs3,27

in the form of either compiled machine code or scripts. These are read-28

only and executable, and are updated when the bundle is updated (and29

at no other time).30

– Some of these programs are designed to be run directly by a user.31

These are traditionally installed in /usr/bin on Unix systems. Other32

programs are supporting programs, designed to be run internally33

by programs or libraries. These are traditionally installed in34

/usr/libexec (or sometimes /usr/lib) on Unix systems. Apertis35

does not require a technical distinction between these categories of36

1https://www.apertis.org/concepts/applications/
2https://www.apertis.org/concepts/system-updates-and-rollback/
3https://www.apertis.org/glossary/#program

2

https://www.apertis.org/concepts/applications/
https://www.apertis.org/concepts/system-updates-and-rollback/
https://www.apertis.org/glossary/#program
https://www.apertis.org/concepts/applications/
https://www.apertis.org/concepts/system-updates-and-rollback/
https://www.apertis.org/glossary/#program

program, but it would be convenient for them to be installed in a37

layout similar to the traditional one.38

• Application bundles that contain compiled executables may contain pri-39

vate shared libraries, in addition to those provided by the platform4, to40

support the executable. These are read-only ELF shared libraries, and are41

updated when the bundle is updated.42

• Application bundles may contain support dynamically-loaded plugins.43

• Application bundles may contain static resource files such as .gresource44

resource bundles, icons, fonts, or sample content. These are read-only, and45

are updated when the bundle is updated.46

– Where possible, application bundles should embed resources in the47

executable or library using GResource5. However, there are some48

situations in which this might not be possible, which will result in49

storing resource files in the filesystem:50

∗ if the application will load the resource via an API that is not51

compatible with GResource, but requires a real file52

∗ if the resource is extremely large53

∗ if the resource will be read by other programs, such as the icon54

that will be used by the app-launcher, the .desktop file describing55

an entry point, or D-Bus service files (used by dbus-daemon)56

– If a separate .gresource file is used, for example for programs written57

in JavaScript or Python, then that file needs to be stored somewhere.58

Variable files59

• The programs in application bundles may save variable data (configura-60

tion, state and/or cached files) for each user6 (Applications design - Data61

Storage7).62

– Configuration is any setting or preference for which there is a reason-63

able default value. If configuration is deleted, the expected result is64

that the user is annoyed by the preference being reset, but nothing65

important has been lost.66

– Cached files are files that have a canonical version stored elsewhere,67

and so can be deleted at any time without any effect, other than68

performance, resource usage, or limited functionality in the absence69

of an Internet connection. For example, a client for “tile map”services70

like Google Maps or OpenStreetMap should store map tiles in its71

cache directory. If cached files are deleted, the expected result is that72

the system is slower or less featureful until an automated process can73

refill the cache.74

4https://www.apertis.org/glossary/#platform
5https://developer.gnome.org/gio/stable/GResource.html
6https://www.apertis.org/glossary/#user
7https://www.apertis.org/concepts/applications/#data-storage

3

https://www.apertis.org/glossary/#platform
https://developer.gnome.org/gio/stable/GResource.html
https://developer.gnome.org/gio/stable/GResource.html
https://developer.gnome.org/gio/stable/GResource.html
https://www.apertis.org/glossary/#user
https://www.apertis.org/concepts/applications/#data-storage
https://www.apertis.org/concepts/applications/#data-storage
https://www.apertis.org/concepts/applications/#data-storage
https://www.apertis.org/glossary/#platform
https://developer.gnome.org/gio/stable/GResource.html
https://www.apertis.org/glossary/#user
https://www.apertis.org/concepts/applications/#data-storage

– Non-configuration, non-cache data includes documents written by the75

user, database-like content such as a contact list or address book,76

license keys, and other unrecoverable data. It is usually considered77

valuable to the user and should not be deleted, except on the user’78

s request. If non-configuration, non-cache data is unintentionally79

deleted, the expected result is that the user will try to restore it from80

a backup.81

• Newport needs to be able to write downloaded files to a designated direc-82

tory owned by the application bundle.83

– Because downloads might contain private information, Newport must84

download to a user- and bundle-specific location.85

Upgrade, rollback, reset and uninstall86

Store applications Suppose we have a store application bundle8, Shopping87

List version 23, which stores each user’s grocery list in a flat file. A new version88

24 becomes available; this version stores each user’s grocery list in a SQLite89

database.90

• Shopping List can be installed and upgraded. This must be relatively91

rapid.92

• Before upgrade from version 23 to version 24, the system should make93

version 23 save its state and exit, terminating it forcibly if necessary, so94

that processes from version 23 do not observe version 24 files or any inter-95

mediate state, which would be likely to break their assumptions and cause96

a crash.97

– This matches the user experience seen on Android: graphical and98

background processes from an upgraded .apk are terminated during99

upgrade.100

• After upgrade from version 23 to version 24, the current data will still be101

in the version 23 format (a flat file).102

• When a user runs version 24, the application bundle may convert the data103

to version 24 format if desired. This is the application author’s choice.104

• If a user rolls back Shopping List from version 24 to version 23, it is the105

application’s responsibility to handle the now-converted saved data.106

• Shopping List can be uninstalled. This must be relatively rapid. (Appli-107

cations design9 §4.1.4, “Store Applications —Removal”)108

• When Shopping List is uninstalled from the system, the system must re-109

move all associated data, for all users.110

8https://www.apertis.org/glossary/#store-application-bundle
9https://www.apertis.org/concepts/applications/

4

https://www.apertis.org/glossary/#store-application-bundle
https://www.apertis.org/concepts/applications/
https://www.apertis.org/concepts/applications/
https://www.apertis.org/concepts/applications/
https://www.apertis.org/glossary/#store-application-bundle
https://www.apertis.org/concepts/applications/

– If a multi-user system emulates a per-user choice of apps by hiding111

or showing apps separately on a per-user basis, it should delete user112

data at the expected time: if user 1 “uninstalls”Shopping List, but113

user 2 still wants it installed, the system may delete user 1’s data114

immediately.115

• Unresolved: Are downloads rolled back?116

Built-in applications By definition, built-in application bundles10 are part117

of the same filesystem image as the platform. They are upgraded and/or rolled118

back with the platform. Suppose platform version 2 has a built-in application119

bundle, Browser version 17. A new platform version 3 becomes available, con-120

taining Browser version 18.121

• The platform can be upgraded. This does not need to be particularly122

rapid: a platform upgrade is a major operation which requires rebooting,123

etc. anyway.124

• Immediately after upgrade, the data is still in the format used by Browser125

version 17.126

• Uninstalling a built-in application bundle is not possible (Applications de-127

sign11 §4.2.3, “Built-in Applications —Removal”) but it should be possible128

to delete all of its variable data, with the same practical result as if an129

equivalent store application bundle had been uninstalled and immediately130

reinstalled.131

• Cache files for built-in applications are treated the same as cache files for132

Store applications, above.133

Global operations User accounts can be created and/or deleted.134

• Deleting a user account does not need to be as rapid as uninstalling an135

application bundle. It should delete that user’s per-user data in all appli-136

cation bundles.137

A “data reset”operation affects the entire system. It clears everything.138

• A “data reset”does not need to be as rapid as uninstalling an application139

bundle. It should delete all variable data in each application bundle, and140

all variable data that is shared by application bundles.141

Unresolved: Does data reset uninstall apps?142

Security and privacy considerations143

• Given a bundle ID and whether the program is part of a built-in or store144

application, it must be easy to determine where it may write. Again, this145

is for services like Newport.146

10https://www.apertis.org/glossary/#built-in-application-bundle
11https://www.apertis.org/concepts/applications/

5

https://www.apertis.org/glossary/#built-in-application-bundle
https://www.apertis.org/concepts/applications/
https://www.apertis.org/concepts/applications/
https://www.apertis.org/concepts/applications/
https://www.apertis.org/glossary/#built-in-application-bundle
https://www.apertis.org/concepts/applications/

• The set of installed store application bundles is considered to be confiden-147

tial, therefore typical application bundles (with no special permissions)148

must not be able to enumerate the entry points, systemd units, D-Bus149

services, icons etc. provided by store application bundles. A permission150

flag could be provided to make an exception to this rule, for example for151

an application-launcher application like Android’s Trebuchet.152

• Unresolved: Are built-in bundles visible to all?153

Miscellaneous154

• Directory names should be namespaced by reversed domain names12, so155

that it is not a problem if two different vendors produce an app-bundle156

with a generic name like “Navigation”.157

• Where possible, functions in standard open-source libraries in our stack,158

such as GLib and Gtk, should “do the right thing”. For example,159

g_get_cache_dir() should continue to be the correct function to call to get160

a parent directory for an application’s cache.161

• Where possible, functions in other standard open-source libraries such162

as Qt and SDL should generally also behave as we would want. This163

can be achieved by making use of common Linux conventions such as164

the XDG Base Directory specification13 where possible. However, these165

other libraries are likely to have less strong integration with the Apertis166

platform in general, so there may be pragmatic exceptions to this principle:167

full compatibility with these libraries is a low priority.168

Writing application bundles169

Application bundle authors should refer to the Flatpak documentation14 for170

details on building Flatpak application bundles.171

Unresolved design questions172

Does data reset uninstall apps?173

Does a data reset leave the installed store apps installed, or does it uninstall174

them all? (In other words, does it leave store apps’static files intact, or does it175

delete them?)176

Appendix: comparison with other systems177

Desktop Linux (packaged apps)178

There are many possibilities, but a common coding standard looks like this:179

• Main programs are installed in $bindir (which is set to /usr/bin)180

12https://www.apertis.org/glossary/#reversed-domain-name
13http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
14https://docs.flatpak.org/

6

https://www.apertis.org/glossary/#reversed-domain-name
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://docs.flatpak.org/
https://www.apertis.org/glossary/#reversed-domain-name
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://docs.flatpak.org/

• Supporting programs are installed in $libexecdir (which is set to either181

/usr/libexec or /usr/lib), often in a subdirectory per application package182

• Public shared libraries are installed in $libdir (which is set to either183

/usr/lib or /usr/lib64 or /usr/lib/$architecture)184

– Plugins are installed in a subdirectory of $libdir185

– Private shared libraries are installed in a subdirectory of $libdir186

• .gresource resource bundles (and any resource files that cannot use GRe-187

source) are installed in $datadir, which is set to /usr/share188

• System-level configuration is installed in a subdirectory of $sysconfdir,189

which is set to /etc190

• System-level variable data is installed in $localstatedir/lib/$package and191

$localstatedir/cache/$package, with $localstatedir set to /var192

• There is normally no technical protection between apps, but per-user vari-193

able data is stored according to the XDG Base Directory specification15194

in:195

– $XDG_CONFIG_HOME/$package, defaulting to /home/$username/.config/$package,196

where $username is the user’s login name and $package is the short197

name of the application or package198

– $XDG_DATA_HOME/$package, defaulting to /home/$username/.local/share/$package199

– $XDG_CACHE_HOME/$package, defaulting to /home/$username/.cache/$package200

• The user’s home directory, normally /home/$username, is shared between201

apps but private to the user202

– It is usually technically possible for one app to alter another app’s203

subdirectories of $XDG_CONFIG_HOME etc.204

• There is no standard location that can be read and written by all users,205

other than temporary directories which are not intended to be shared206

Debian Policy §9.1 “File system hierarchy”16 describes the policy followed on De-207

bian and Ubuntu systems for non-user-specific data. It references the Filesystem208

Hierarchy Standard, version 2.317.209

Similar documents:210

• The Filesystem Hierarchy Standard, version 3.018 has not yet been211

adopted by Debian Policy.212

• The GNU Coding Standards19 use a similar layout by default.213

• systemd’s proposals for file hierarchy20 have been partially adopted by214

Linux distributions.215

15http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
16https://www.debian.org/doc/debian-policy/ch-opersys.html#s9.1
17http://www.pathname.com/fhs/pub/fhs-2.3.html
18http://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
19https://www.gnu.org/prep/standards/html_node/Directory-Variables.html#Directory-

Variables
20http://www.freedesktop.org/software/systemd/man/file-hierarchy.html

7

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://www.debian.org/doc/debian-policy/ch-opersys.html#s9.1
http://www.pathname.com/fhs/pub/fhs-2.3.html
http://www.pathname.com/fhs/pub/fhs-2.3.html
http://www.pathname.com/fhs/pub/fhs-2.3.html
http://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
https://www.gnu.org/prep/standards/html_node/Directory-Variables.html#Directory-Variables
http://www.freedesktop.org/software/systemd/man/file-hierarchy.html
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://www.debian.org/doc/debian-policy/ch-opersys.html#s9.1
http://www.pathname.com/fhs/pub/fhs-2.3.html
http://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html
https://www.gnu.org/prep/standards/html_node/Directory-Variables.html#Directory-Variables
https://www.gnu.org/prep/standards/html_node/Directory-Variables.html#Directory-Variables
http://www.freedesktop.org/software/systemd/man/file-hierarchy.html

Android216

• System app packages (the equivalent of our built-in application bundles21)217

are stored in /system/app/$package.apk218

• Normal app packages (the equivalent of our store application bundles22)219

are stored in /data/app/$package.apk220

• Private shared libraries and plugins (and, technically, any other supporting221

files) are automatically unpacked into /data/data/$package/lib/ by the OS222

• Resource files are loaded from inside the .apk file (analogous to GResource)223

instead of existing as files in the filesystem224

• Per-user variable data is stored in /data/data/$package/ on single-user de-225

vices226

• Per-user variable data is stored in /data/user/$user/$package/ on multi-227

user devices228

• There is no location that is private to an app but shared between users.229

• There is no location that is shared between apps but private to a user.230

• /sdcard is shared between apps but not between users. Large data files231

such as music and videos are normally stored here.232

systemd “revisiting Linux systems”proposal233

The authors of systemd propose a structure like this23. At the time of writing,234

no implementations of this idea are known.235

• The static files of application bundles are installed in a subvolume named236

app:$bundle_id:$runtime:$architecture:$version, where:237

– $bundle_id is a reversed domain name identifying the app bundle itself238

– $runtime identifies the set of runtime libraries needed by the applica-239

tion bundle (in our case it might be org.apertis.r15_09)240

– $architecture represents the CPU architecture241

– $version represents the version number242

• That subvolume is mounted at /opt/$bundle_id in the app sandbox. The243

corresponding runtime is mounted at /usr.244

• User-specific variable files are in a subvolume named, for example,245

home:user:1000:1000 which is mounted at /home/user.246

• System-level variable files go in /etc and /var as usual.247

• There is currently no concrete proposal for a trust boundary between apps:248

all apps are assumed to have full access to /home.249

• There is no location that is private to an app but shared between users.250

• There is no location that is shared between apps and between users, other251

than removable media.252

21https://www.apertis.org/glossary/#built-in-application-bundle
22https://www.apertis.org/glossary/#store-application-bundle
23http://0pointer.net/blog/revisiting-how-we-put-together-linux-systems.html

8

https://www.apertis.org/glossary/#built-in-application-bundle
https://www.apertis.org/glossary/#store-application-bundle
http://0pointer.net/blog/revisiting-how-we-put-together-linux-systems.html
https://www.apertis.org/glossary/#built-in-application-bundle
https://www.apertis.org/glossary/#store-application-bundle
http://0pointer.net/blog/revisiting-how-we-put-together-linux-systems.html

References253

• Applications design document24 (v0.5.4 used)254

• Multimedia design document25 (v0.5.4 used)255

• Security design document26 (v1.1.3 used)256

• System Update and Rollback design document27 (v1.6.2 used)257

24https://www.apertis.org/concepts/applications/
25https://www.apertis.org/concepts/multimedia/
26https://www.apertis.org/concepts/security/
27https://www.apertis.org/concepts/system-updates-and-rollback/

9

https://www.apertis.org/concepts/applications/
https://www.apertis.org/concepts/multimedia/
https://www.apertis.org/concepts/security/
https://www.apertis.org/concepts/system-updates-and-rollback/
https://www.apertis.org/concepts/applications/
https://www.apertis.org/concepts/multimedia/
https://www.apertis.org/concepts/security/
https://www.apertis.org/concepts/system-updates-and-rollback/

	Requirements
	Static files
	Variable files
	Upgrade, rollback, reset and uninstall
	Security and privacy considerations
	Miscellaneous

	Writing application bundles
	Unresolved design questions
	Does data reset uninstall apps?

	Appendix: comparison with other systems
	Desktop Linux (packaged apps)
	Android
	systemd “revisiting Linux systems” proposal

	References

