
UI customisation

Contents1

Introduction 42

Terminology and Concepts 43

Vehicle . 44

System . 45

User . 46

Widget . 47

User Interface . 48

Roller . 59

Speller . 510

Application Author . 511

Variant . 512

View . 513

Template . 514

UI prototyping . 515

WYSIWYG UI editing . 616

Use Cases 617

Multiple Variants . 618

Fixed Variants . 619

Templates . 620

Template Extension . 721

Custom Widget Usage . 722

Template Library . 723

Appearance Customisation . 724

Different Icon Themes . 725

Different Fonts . 726

OTA Updates . 827

Language . 828

Right-to-Left Scripts . 829

OTA Updates . 830

Animations . 831

Prototyping . 832

Day & Night Mode . 933

View Management . 934

Display Orientation . 935

Speed Lock . 936

Geographical Customisation . 937

System Enforcement . 938

Non-Use Cases 939

Theming Custom Widgets . 1040

Multiple Monitors . 1041

DPI Independence . 1042

2

Display Size . 1043

Dynamic Display Resolution Change 1044

Requirements 1045

Variant set at Compile-Time . 1046

CSS Styling . 1047

Templates . 1148

Catalogue of Templates . 1149

Template Extension . 1250

Template Modularity . 1251

Custom Widgets in Templates . 1252

Documentation . 1253

Widget Interfaces . 1254

GResources . 1355

MVC Separation . 1356

Language Support . 1357

Animations . 1458

Scripting Support . 1459

Day & Night Mode . 1460

View Management . 1461

Speed Lock . 1462

Scrolling Lists . 1463

Text . 1564

List Columns . 1565

Keyboard . 1566

Pictures . 1567

Video Playback . 1568

Map Gestures . 1569

Web View . 1670

Insensitive Widgets . 1671

Approach 1672

Templates . 1673

Properties, Signals, and Callbacks 1674

Widget Factories . 1675

Custom Widgets . 1776

Models . 1777

Theming . 1778

Theme Changes . 1879

Language Support . 1880

Language Changes . 1881

Updating Languages . 1882

Day & Night Mode . 1883

Speed Lock . 1884

List Columns . 1985

Keyboard . 1986

3

Insensitive Widgets . 1987

Notifications . 1988

Masking Unknown Applications 1989

Introduction90

The goal of this user interface customisation design document is to reduce app91

development time when porting between variants by abstracting the differences92

between variants into a UI library.93

The goal of standardising this process is reduce the amount of code written or94

changed in customising a variant. It is understood that for system components,95

code might have to be altered for some requests, but code inside application96

bundles should remain as similar as possible and work in variant-specific ways97

automatically.98

Terminology and Concepts99

Vehicle100

For the purposes of this document, a vehicle may be a car, car trailer, motor-101

bike, bus, truck tractor, truck trailer, agricultural tractor, or agricultural trailer,102

amongst other things.103

System104

The system is the infotainment computer in its entirety in place inside the105

vehicle.106

User107

The user is the person using the system, be it the driver of the vehicle or a108

passenger in the vehicle.109

Widget110

A widget is a reusable part of the user interface which can be changed depending111

on location and function.112

User Interface113

The user interface is the group of all widgets in place in a certain layout to114

represent a specific use-case.115

4

Roller116

The roller is a list widget named after a cylinder which revolves around its117

central horizontal axis. As a result of being a cylinder it has no specific start118

and finish and appears endless.119

Speller120

The speller is a widget for text input.121

Application Author122

The application author is the developer tasked with writing an application using123

the widgets described in this document. They cannot modify the variant or the124

user interface library.125

Variant126

A variant is a customised version of the system by a particular system integrator.127

Usually variants are personalised with particular colour schemes and logos and128

potentially different widget behaviour.129

View130

A view is an page in an application with an independent purpose. Views move131

from one to another, and sometimes also back, to form the workflow of the132

application. For example, in a photo application the list of photos is one view133

and the highlight on one photo in particular, perhaps with more metadata from134

the photo, is another view.135

Template136

A template is a text-based representation of a set of widgets in a view. Templates137

are for allowing changes and extensions without having to rebuild the actual138

code.139

UI prototyping140

UI prototyping is the process of building a mock-up of a UI to evaluate how it141

looks, and how usable it is for different use cases —but without hooking up the142

UI to an application implementation or backing code. The idea is to be able143

to produce a representative UI as fast as possible, so designers and testers can144

evaluate its usability, and can produce further iterations of the design, without145

wasting time on implementing backing functionality in code until the design is146

finalised. At this point, a programmer can turn the prototype into a complete147

implementation in code.148

5

The process of prototyping is not relevant to UI customisation, but is relevant149

to the process of using a UI toolkit.150

Here is an example of some prototype UIs1, made in Inkscape.151

WYSIWYG UI editing152

WYSIWYG UI editing is the process of using a UI editor, such as Glade2, where153

the UI elements can be composed visually and interactively to build the UI, for154

example by dragging and dropping them together. The appearance of the UI in155

the designer is almost identical to its appearance when it is run in production.156

Use Cases157

A variety of use cases for UI customisation are given below.158

Multiple Variants159

Each system integrator wants to use the same user interface without having to160

rewrite from scratch (see Variant differences).161

For example, in the speller, variant A wants to highlight the key on an on-screen-162

keyboard such that the key pops out of the keyboard, whereas variant B wants163

to highlight just the letter within the key with no pop out animation.164

Another example, in the app launcher, variant A wants to use a cylinder anima-165

tion for rolling whereas variant B wants to scroll the list of applications like a166

flat list.167

Fixed Variants168

A system integrator wants multiple variants to be installable concurrently on169

the system, but wants the variant in use to be fixed and not able to change170

after being set in a configuration option. The system integrator wants said171

configuration option to be changeable without rebuilding.172

Templates173

A system integrator wants to customise the user interface as easily as possible174

without recompilation of applications. The system integrator wants to be able175

to choose the widgets in use in a particular application user interface (from a176

list of available widgets) and have them work accordingly.177

For example, in a photo viewing application with one photo selected, system in-178

tegrator A might want to display the selected photo with nothing else displayed,179

1https://github.com/gnome-design-team/gnome-mockups/blob/master/passwords-and-
keys/passwords-and-keys.png

2https://glade.gnome.org/

6

https://github.com/gnome-design-team/gnome-mockups/blob/master/passwords-and-keys/passwords-and-keys.png
https://glade.gnome.org/
https://github.com/gnome-design-team/gnome-mockups/blob/master/passwords-and-keys/passwords-and-keys.png
https://github.com/gnome-design-team/gnome-mockups/blob/master/passwords-and-keys/passwords-and-keys.png
https://glade.gnome.org/

while system integrator B might want to display the selected photo in the centre180

of the display, but also have the next and previous photos slightly visible at the181

sides.182

Template Extension183

A system integrator wants to use the majority of a provided template, but184

also wants to add their own variant-specific extensions. The system integrator185

wants to achieve this without copy and pasting provided templates to retain186

maintainability, and wants to add their own extension template which merely187

references the provided one.188

For example, said system integrator wants to use an provided button widget,189

but wants to make it spin 360° when clicked. They want to just override the190

library widget, adding the spin code, and not have to touch any other code191

relating to the internal working of the widget already provided in the library.192

Custom Widget Usage193

A system integrator wants to implement custom widgets by writing actual code.194

The system integrator wants to be integrate the new custom widgets into the195

user interface and into the developer tooling.196

Template Library197

A system integrator wants to be able to add new templates to the system via198

over the air (OTA) updates. The system integrator does not want the template199

to be able to reload automatically after being updated.200

Appearance Customisation201

Each system integrator wants to customise the look and feel of applications202

by changing styling such as padding widths, border widths, colours, logos, and203

gradients. The system integrator wants to make said modifications with the204

minimum of modifications, especially to the source code.205

Different Icon Themes206

Each system integrator wants to be able to trivially change the icon theme in use207

across the user interface not only without recompilation, but also at runtime.208

Different Fonts209

Each system integrator wants to be able to trivially change the font in use across210

the user interface, and bundle new fonts in with variants.211

7

OTA Updates212

System integrators want to be able to add fonts using over the air (OTA) updates.213

For example, the system integrator wants to change the font in use across the214

user interface of the variant. They send the updated theme definition as well as215

the new font file via an update and want it to be registered automatically and216

be immediately useable.217

Language218

The user wants to change the language of the controls of the system to their219

preferred language such that every widget in the UI that contains text updates220

accordingly without having to restart the application.221

Right-to-Left Scripts222

As above, the user wants to change the language of the controls of the system,223

but to a language which is read from right-to-left (Arabic, Persian, Hebrew, etc.),224

instead of left-to-right. The user expects the workflow of the user interface to225

also change to right-to-left.226

OTA Updates227

A system integrator wants to be able to add and improve language support over228

over the air (OTA) updates. For example, the system integrator wants to add229

a new translation to the system. They send the translation via an update and230

want the new language to immediately appear as an option for the user to select.231

Animations232

A system integrator wants to customise animations for the system. For example,233

they want to be able to change the behaviour of list widgets by setting the234

visual response using kinetic scrolling and whether there’s an elastic effect when235

reaching the end of items. Another example is they also want to be able to236

customise the animation used when changing views in an application. Another237

example is the how button widgets react when pressed.238

The system integrator then expects to see the changes apply across the entire239

system.240

Prototyping241

An application author wants to prototype a UI rapidly (see UI prototyping),242

using a WYSIWYG UI development tool (see WYSIWYG UI editing) with243

access to all the widgets in the library, including custom and vendor-specific244

widgets.245

8

Day & Night Mode246

A user is using the system when dark outside and wants the colour scheme of247

the display to change to accommodate for the darkness outside so not be too248

bright and dazzle the user. Requiring the user to adapt their eyes momentarily249

for the brightness of the system could be dangerous.250

View Management251

An application author has several views in their application and doesn’t want to252

have to write a system of managing said views. They want to be able to add a253

workflow and leave the view construction, show and hide animations, and view254

destruction up to the user interface library.255

Display Orientation256

A system integrator changes the orientation of the display. They expect the257

user interface to adapt and display normally, potentially using a different layout258

more suited to the orientation.259

Note that the adaptation is only expected to be implemented if easy and is not260

expected to be instantaneous, and a restart of the system is acceptable.261

Speed Lock262

Laws require that when the vehicle is moving some features be disabled or263

certain behaviour modified.264

Geographical Customisation265

Different geographical regions have different laws regarding what features and266

behaviours need to be changed, so it must be customisable (only) by the system267

integrator when it is decided for which market the vehicle is destined.268

System Enforcement269

Due to restrictions being government laws, system integrators don’t want to rely270

on application authors to respect said restrictions, and instead want the system271

to enforce them automatically.272

Non-Use Cases273

A variety of non-use cases for UI customisation are given below.274

9

Theming Custom Widgets275

An application developer wants to write their own widget using a library directly.276

They understand that standard variant theming will not apply to any custom277

widget and any integration will have to be achieved manually.278

Note that although unsupported directly by the user interface library, it is279

possible for application authors to implement this higher up in the application280

itself.281

Multiple Monitors282

A system integrator wants to connect two displays (for example, one via HDMI283

and one via LVDS) and show something on each one, for example when devel-284

oping on a target board like the i.MX6. They understand this is not supported285

by Apertis.286

DPI Independence287

A system integrator uses a display with a different DPI. They understand that288

they should not expect that the user interface changes to display normally and289

not too big/small relative to the old DPI.290

Display Size291

A system integrator changes the resolution of the display. They understand292

that they should not expect the user interface to adapt and display normally,293

potentially using a different layout more suited to the new display size.294

Dynamic Display Resolution Change295

A system integrator wants to be able to change the resolution of the display or296

resize the user interface. They understand that a dynamic change in the user297

interface is not supported in Apertis.298

Requirements299

Variant set at Compile-Time300

Multiple variants should be supported on the system but the variant in use301

should be decided at application compile-time such that it cannot be changed302

later (see Fixed variants).303

CSS Styling304

The basic appearance of the widgets should be stylable using CSS, changing305

the look and feel as much as possible with no modifications to the source code306

10

required (see Appearance customisation, Different icon themes).307

The changes possible using CSS do not need to be incredibly intrusive and are308

limited to the basic core CSS properties. For example, changing colour scheme309

(background-color, color), icon theme & logos (background-image), fonts (font-310

family, font-size), and spacing (margin, padding).311

More intrusive changes to the user interface should be achieved using templates312

(see Templates) instead of CSS changes.313

For example, a system integrator wants to change the colour of text in buttons.314

This should be possible by changing some CSS.315

Templates316

CSS is appropriate for changing simple visual aspects of the user interface but317

does not extend to allow for structural modifications to applications (see CSS318

styling). Repositioning widgets or even changing which widgets are to be used is319

not possible with CSS and should be achieved using templates (see Templates).320

There are multiple layers of widgets available for use in applications. Starting321

from the lowest, simplest, level and moving higher, encapsulating more with322

each step:323

• buttons, entries, labels, ⋯324

• buttons with labels, radio buttons with labels, ⋯325

• lists, tree view, ⋯326

• complete views, or templates.327

Templates are declarative representations of the layout of the user interface328

which are read at runtime by the application. Using templates it is possible329

to redesign the layout, look & feel, and controls of the application without330

recompilation.331

The purpose of templates is to reduce the effort required by an application332

author to configure each widget, and to maintain the same look and feel across333

the system.334

Catalogue of Templates335

There should be a catalogue of templates provided by the library which system336

integrators can use to design their applications (see Template library). The337

layouts of applications should be limited to the main use cases.338

For example, one system integrator could want the music application to be339

a simple list of albums to choose from, while another could want the same340

information represented in a grid. This simple difference should be possible by341

using different templates already provided by the user interface library.342

11

Template Extension343

In addition to picking layouts from user interface library-provided templates, it344

should also be possible to take existing templates and change them with the345

minimal of copy & pasting (see Template extension).346

For example, a system integrator could want to change the order of labels in347

a track information view. The default order in the library-provided template348

could be track name and then artist name, but said system integrator wants349

the artist name first, followed by the track name. This kind of change is too350

fundamental to do in CSS so a template modification is required. The system351

integrator should be able to take the existing library-provided template and352

make minimal modifications and minimal copy & pasting to change the order.353

Template Modularity354

Templates should be as modular as possible in order to break up the parts of355

a design into smaller parts. This is useful for when changes are required by a356

system integrator (see Templates, Template extension). If the entire layout is357

in one template, it is difficult to make small changes without having to copy the358

entire original template.359

Fine-grained modularity which leads to less copy & pasting is optimal because360

it makes the template more maintainable, as there’s only one place to change if361

a bug is discovered in the original library-provided template.362

Custom Widgets in Templates363

A system integrator should be able to use custom widgets they have written364

for the particular variant in the template format (see Custom widget usage).365

The responsibility of compatibility with the rest of the user interface of custom366

widgets is on the widget author.367

Documentation368

With a library of widgets and models available to the system integrator, the369

options of widgets and ways to interact with them should be well documented370

(see Template library). If signals, signal callbacks, and properties are provided371

these should all be listed in the documentation for the system integrator to372

connect to properly.373

Widget Interfaces374

When swapping a widget out for another one in a template it is important that375

the API matches so the change will work seamlessly. To ensure this, widgets376

should implement core interfaces (button, entry, combobox, etc.) so that when377

swapped out, views will continue to work as expected using the replacement378

widget. Applications should only use API which is defined on the interface, not379

12

on the widget implementation, if they wish for their widgets to be swappable380

for those in another variant.381

As a result, system integrators swapping widgets out for replacements should382

check the API documentation to ensure that the interface implemented by the383

old widget is also implemented in the new widget. This will ensure compatibility.384

GResources385

If an application is loading a lot of templates from disk there could be an386

overhead in the input/output operation in loading them. A way around this387

is to use GResource3s. GResources are useful for storing arbitrary data, such388

as templates, either packed together in one file, or inside the binary as literal389

strings. It should be noted that if linked into the binary itself, the binary will390

have to be rebuilt every time the template changes. If this is not an option,391

saving the templates in an external file using the glib-compile-resources binary392

is necessary.393

The advantage of linking resources into the binary is that once the binary is394

loaded from disk there is no more disk access. The disadvantage of this is as395

mentioned before is that rebuilding is required every time resources change. The396

advantage of putting resources into a single file is that they are only required to397

be mapped in memory once and then can be shared among other applications.398

MVC Separation399

There should be a functional separation between data provider (model), the400

way in which it is displayed in the user interface (view), and the widgets for401

interaction and data manipulation (controller) (see example in Templates). The402

model should be a separate object not depending on any visual aspect of the403

widget.404

Following on from the previous example (in Templates), the model would be the405

list of pictures on the system, and the two variants would use different widgets,406

but would attach the same model to each widget. This is the key behind being407

able to swap one widget for another without making code changes.408

This separation would push the model and controller responsibility to the user409

interface library, and an application would only depend on the model in that it410

provides the data to fill said model.411

Language Support412

All widgets should be linked into a language translation system such that it is413

trivial not only for the user to change language (see Language), but also for new414

translations to be added and existing translations updated (see Ota updates).415

3https://developer.gnome.org/gio/stable/GResource.html

13

https://developer.gnome.org/gio/stable/GResource.html
https://developer.gnome.org/gio/stable/GResource.html

Animations416

Animations in use in widgets should be configurable by the system integrator417

(see Animations for examples). These animations should be used widely across418

the system to ensure a consistent experience. Applications should expose a fixed419

set of transitions which can be animated so system integrators can tell what can420

be customised.421

Scripting Support422

The widgets and templates should be usable from a UI design format, such423

as GtkBuilder4. This includes custom widgets. This would enable application424

authors to quickly prototype applications (see Prototyping).425

Day & Night Mode426

The user interface should change between light and dark mode when outside the427

vehicle becomes dark in order to not shine too brightly and distract the user428

(see Day night mode).429

View Management430

A method of managing application views (see View) should be provided to ap-431

plication authors (see View management). On startup the application should432

provide its views to the view manager. From this point on the responsibility433

of constructing views, switching views, and showing view animations should be434

that of the view manager. The view manager should pre-empt the construction435

of views, but also be sensitive to memory usage so not load all views simultane-436

ously.437

Speed Lock438

Some features and certain behaviour in the user interface should be disabled or439

modified respectively when the vehicle is moving (see Speed lock). It should be440

possible to customise whether each item listed below is disabled or not as it can441

depend on the target market of the vehicle (see Geographical customisation).442

Additionally, it should be up to the system to enforce the disabling of the fol-443

lowing features and should not be left completely up to application authors (see444

System enforcement).445

Scrolling Lists446

The behaviour of gestures in scrolling lists should be altered to remove fast move-447

ments with many screen updates. Although still retaining similar functionality,448

gestures should cause far fewer visual changes. For example, swiping up would449

no longer start a kinetic scroll, but would move the page up one tabulation.450

4https://developer.gnome.org/gtk3/stable/GtkBuilder.html#GtkBuilder.description

14

https://developer.gnome.org/gtk3/stable/GtkBuilder.html#GtkBuilder.description
https://developer.gnome.org/gtk3/stable/GtkBuilder.html#GtkBuilder.description

Text451

Text displayed should either be masked or altered to remove the distraction of452

reading it while operating the vehicle, depending on the nature of the text.453

• SMS messages and emails can have dynamic content so they should be454

hidden or masked.455

• Help text or dialog messages should have alternate, shorter messages to456

be shown when the speed lock is active.457

List Columns458

Lists with columns should limit the number of columns visible to ensure super-459

fluous information is not distracting. For example, in a contact list, instead of460

showing both name and telephone number, the list could should show only the461

name.462

Keyboard463

The keyboard should be visibly disabled and not usable.464

Additionally, default values should be available so that operations can succeed465

without the use of a keyboard. For example when adding a bookmark when466

the vehicle is stationary the user will be able to choose a name for the new467

bookmark before saving it. When the vehicle is moving the bookmark will be468

automatically saved under a default name without the user being prompted for469

the name. The name (and other use cases of default values) should be modifiable470

later.471

Pictures472

Superfluous pictures used in applications as visual aids which could be distract-473

ing should be hidden. For example, in the music application, album covers474

should be hidden from the user.475

Video Playback476

Video playback must either be paused or the video masked (while the audio477

continues to sound).478

Map Gestures479

As with kinetic scrolling in lists (see Scrolling lists), the gestures in the map480

widget should make fewer visual changes and reduce the number of distractions481

for the user. Similar to the kinetic scroll example, the map view should move482

by a fixed distance instead of following the user’s input.483

15

Web View484

Any web view should be masked and not showing any content.485

Insensitive Widgets486

When aforementioned functionality is disabled by the speed lock, it should be487

made clear to the user what has been modified and why.488

Approach489

Templates490

The goal of templates is to allow an application developer to change the user491

interface of their application without having to changing the source code. These492

are merely templates and have no way of implementing logic (if/else statements).493

If this is required, widget code customisation is required (see Custom widgets).494

Properties, Signals, and Callbacks495

The GObject properties that can be set, the signals that can be connected496

to, and the signal callbacks that can be used, should be listed clearly in the497

application documentation. This way, system integrators can customise the498

look and feel of the application using already-written tools.499

When changing a template to use a different widget it might be necessary to500

change the signal callbacks. This largely depends on the nature of the change501

of widget but signals names and signatures should be as consistent as possible502

across widgets to enable changing as easily as possible. If custom callbacks503

are used in the code of an application, and the callback signature changes,504

recompilation will be necessary. The signals emitted by widgets and their type505

signatures are defined in their interfaces, documented in the API documentation.506

Widget Factories507

If a system integrator wants to replace a widget everywhere across the user508

interface, they can use a widget factory to replace all instances of said old509

widget with the new customised one.510

For example, if a system integrator wants to stop using LightwoodButtons and511

instead use the custom FancyButton class, there are no changes required to any512

template, but an entry is added to the widget factory to produce a FancyButton513

whenever a LightwoodButton is requested. Templates can continue referring to514

LightwoodButton or can explicitly request a FancyButton but both will be created515

as FancyButtons. If an application truly needs the older LightwoodButton, it needs516

to create a subclass of LightwoodButton which is not overridden by anything, and517

then refer to that explicitly in the template.518

16

Custom Widgets519

Widgets can be subclassed by system integrators in variants and used by ap-520

plication developers by creating shared libraries linking to the widget library.521

Applications then link to said new library and once the new widgets are reg-522

istered with the GObject type system they can be referred to in ClutterScript523

user interface files. If a system integrator wants a radically different widget,524

they can write something from scratch, ensuring to implement the appropriate525

interface. Subclassing existing widgets is for convenience but not technically526

necessary.527

Widgets should be as modularised as possible, splitting functionality into virtual528

methods where a system integrator might want to override it. For example,529

if a system integrator wants the roller widget to have a different activation530

animation depending on the number of items in the model, they could create531

a roller widget subclass, and override the appropriate virtual methods (in this532

case activate) and update the animation as appropriate:533

Models534

Data that is to be displayed to the user in list widgets should be stored in an535

orthogonal model object. This object should have no dependency on anything536

visual (see MVC separation).537

The actual implementation of the model should be of no importance to the538

widgets, and only basic model interface methods should be called by any widget.539

It is suggested to use the GListModel5 interface as said model interface as it540

provides a set of simple type-safe methods to enumerate, manipulate, and be541

notified of changes to the model.542

As GListModel is only an interface, an implementation of said interface should543

be written, ensuring to implement all methods and signals, like GListStore.544

Theming545

Using the GtkStyleContext object from GTK+ is wise for styling widgets as it546

can aggregate styling information from many sources, including CSS. GTK+’547

s CSS parsing code is advanced and well tested as GTK+ itself switched its548

Adwaita6 default theme to pure CSS some time ago, replacing theme engines549

that required C code to be written to customise appearance.550

Said parser and aggregator support multiple layers of overrides. This means551

that CSS rules can be given priorities and rules are followed in a specific order552

(for example theme rules are set, and can be overridden by variant rules, and can553

be overridden by application rules, where necessary). This is ideal for Apertis554

where themes set defaults and variants need only make changes where necessary.555

5https://developer.gnome.org/gio/stable/GListModel.html
6https://git.gnome.org/browse/gtk+/tree/gtk/theme/Adwaita

17

https://developer.gnome.org/gio/stable/GListModel.html
https://git.gnome.org/browse/gtk+/tree/gtk/theme/Adwaita
https://developer.gnome.org/gio/stable/GListModel.html
https://git.gnome.org/browse/gtk+/tree/gtk/theme/Adwaita

Theme Changes556

Applications should listen to a documented GSettings7 key for changes to the557

theme and icon theme. Changes to the theme should update the style properties558

in the GtkStyleContext and will trigger a widget redraw and changes to the icon559

theme should update the icon paths and trigger icon redraws.560

Language Support561

GNU gettext8 is a well-known system for managing translations of applications.562

It provides tools to scan source code looking for translatable strings and a library563

to resolve said strings against language files which are easily updated without564

touching the source code of said applications.565

Language Changes566

Applications should listen to a documented GSettings key for changes to the567

user-chosen language, then re-translate all strings and redraw.568

Updating Languages569

Language files for GNU gettext saved into the appropriate directory can be570

easily used immediately with no other changes to the application. Over the571

air (OTA) updates can contain updated language files which get saved to the572

correct location and would be loaded the next time the application is started.573

Day & Night Mode574

Inspired by GTK+’s dark mode9, variant CSS should provide a dark class for575

widgets to be used in night mode. If the dark class is not set the user interface576

should be in day mode. CSS transitions10 should make the animation smooth.577

A central GSettings key should be read to know when the system is in day or578

night mode. It will be modifiable for testing and in development.579

Speed Lock580

There should be a system-operated service that determines when the vehicle581

is moving and when it is stationary. From this point the Apertis widgets and582

applications should change when and where appropriate.583

There should be a GSettings key which indicates whether the speed lock is active584

or not. This key should only be modifiable by said system-operated service and585

should be readable by the entire system.586

7https://developer.gnome.org/gio/stable/GSettings.html
8https://www.gnu.org/software/gettext/
9https://developer.gnome.org/gtk3/stable/GtkSettings.html#GtkSettings--gtk-applicat

ion-prefer-dark-theme
10http://www.w3schools.com/css/css3_animations.asp

18

https://developer.gnome.org/gio/stable/GSettings.html
https://www.gnu.org/software/gettext/
https://developer.gnome.org/gtk3/stable/GtkSettings.html#GtkSettings--gtk-application-prefer-dark-theme
http://www.w3schools.com/css/css3_animations.asp
https://developer.gnome.org/gio/stable/GSettings.html
https://www.gnu.org/software/gettext/
https://developer.gnome.org/gtk3/stable/GtkSettings.html#GtkSettings--gtk-application-prefer-dark-theme
https://developer.gnome.org/gtk3/stable/GtkSettings.html#GtkSettings--gtk-application-prefer-dark-theme
http://www.w3schools.com/css/css3_animations.asp

List Columns587

The number of columns visible should be reduced to remove superfluous infor-588

mation when the speed lock is active (see List columns). The nature of every589

list can be different and the detection of superfluous information is impossible590

automatically. There should be a way of either application authors specifying591

which columns should be hidden, or it should be left up to the application itself.592

If the latter is not an option (see enforcement comments in Speed lock), the593

entire list widget should be masked to hide its contents.594

Keyboard595

As mentioned in Keyboard, applications should deal with the possibility that596

the keyboard may not be available at any given time, if the speed lock is active.597

In the case that the keyboard request is denied, the application should change598

its user experience slightly to accommodate for this, such as the example with599

bookmarks given previously.600

The change of user experience also means there must be other ways in which601

users can edit named items using default values after the speed lock has been602

disabled.603

Insensitive Widgets604

As highlighted in Insensitive widgets, it should be made obvious to the user when605

functionality is disabled, and why. There should be a uniform visual change606

to widgets when they have been made insensitive so users can immediately607

recognise what is happening.608

A documented CSS class should be added to widgets that are made insensitive609

by the speed lock so that said widgets follow an identical change in display.610

Notifications611

Pop-up notifications or a status bar message should make it clear to the user that612

the speed lock is active and if appropriate, highlight the current functionality613

that has been disabled.614

Masking Unknown Applications615

Applications can technically implement custom widgets and not respect the616

rules of the speed lock. As a result, applications which haven’t been vetted617

by an approved authority should not be able to be run when the speed lock is618

active. When they are already running and the speed lock is activated, they619

should be masked and the user should not be able to interact with them.620

This behaviour should be customisable and possibly only enabled in a region in621

which laws are very strict about speed lock restrictions.622

19

	Introduction
	Terminology and Concepts
	Vehicle
	System
	User
	Widget
	User Interface
	Roller
	Speller
	Application Author
	Variant
	View
	Template
	UI prototyping
	WYSIWYG UI editing

	Use Cases
	Multiple Variants
	Fixed Variants

	Templates
	Template Extension
	Custom Widget Usage
	Template Library

	Appearance Customisation
	Different Icon Themes
	Different Fonts
	OTA Updates

	Language
	Right-to-Left Scripts
	OTA Updates

	Animations
	Prototyping
	Day & Night Mode
	View Management
	Display Orientation
	Speed Lock
	Geographical Customisation
	System Enforcement

	Non-Use Cases
	Theming Custom Widgets
	Multiple Monitors
	DPI Independence
	Display Size
	Dynamic Display Resolution Change

	Requirements
	Variant set at Compile-Time
	CSS Styling
	Templates
	Catalogue of Templates
	Template Extension
	Template Modularity
	Custom Widgets in Templates
	Documentation
	Widget Interfaces
	GResources

	MVC Separation
	Language Support
	Animations
	Scripting Support
	Day & Night Mode
	View Management
	Speed Lock
	Scrolling Lists
	Text
	List Columns
	Keyboard
	Pictures
	Video Playback
	Map Gestures
	Web View
	Insensitive Widgets

	Approach
	Templates
	Properties, Signals, and Callbacks
	Widget Factories
	Custom Widgets

	Models
	Theming
	Theme Changes

	Language Support
	Language Changes
	Updating Languages

	Day & Night Mode
	Speed Lock
	List Columns
	Keyboard
	Insensitive Widgets
	Notifications
	Masking Unknown Applications

