
Audio management

Contents1

Terminology and concepts . 32

Standalone setup . 43

Hybrid setup . 44

Different audio sources for each domain 45

Mixing, corking, ducking . 46

Playing, paused, stopped . 47

Use cases . 58

Application developer . 59

Car audio system . 510

Different types of sources . 511

Navigation instruction . 612

Traffic bulletin . 613

USB drive . 614

Rear sensor sound . 615

Blind spot sensor . 716

Seat belt . 717

Phone call . 718

Resume music . 719

VoIP . 720

Emergency call priority . 721

Mute . 722

Audio recording . 723

Microphone mute . 824

Application crash . 825

Web applications . 826

Control malicious application . 827

Multiple roles . 828

External audio router . 829

Non-use-cases . 830

Automatic actions on streams . 831

Streams’priorities . 832

Multiple independent systems . 933

Requirements . 934

Standalone operation . 935

Integrated operation . 936

Priority rules . 937

Multiple sound outputs . 1038

Remember preempted source . 1039

Audio recording . 1040

Latency . 1041

Security . 1042

Muting output streams . 1043

Muting input streams . 1044

Control source activity . 1045

2

Per stream priority . 1146

GStreamer support . 1147

Approach . 1148

Stream metadata in applications 1149

Requesting permission to use audio in applications 1250

Audio routing principles . 1251

Identification of applications . 1352

Implementation of priority within streams 1353

Corking streams . 1354

GStreamer support . 1455

Remembering the previously playing stream 1456

Using different sinks . 1457

Default media role . 1458

Routing data structure example 1459

WirePlumber policy samples . 1560

Testability . 1861

Requirements . 1862

Open questions . 1963

Roles . 1964

Policies . 1965

Summary of recommendations . 2066

Apertis audio management was previously built around PulseAudio but with67

the move to the Flatpak-based application framework PipeWire1 offers a better68

match for the use-cases below. Compared to PulseAudio, PipeWire natively69

supports containerized applications and keeps policy management separate from70

the core routing system, making it much easier to tailor for specific products.71

Applications can use PipeWire through its native API2, as the final layer to72

access sound features. This does not mean that applications have to deal directly73

with PipeWire: applications can still make use of their preferred sound APIs as74

intermediate layers for manipulating audio streams, with support being available75

for the PulseAudio API, for GStreamer or for the ALSA API.76

In an analogous manner, applications can capture sound for various purposes.77

For instance, speech recognition or voice recorder applications may need to78

capture input from the microphone. The sound will be captured from PipeWire.79

ALSA users can use pcm_pipewire. GStreamer users can use pipewiresrc.80

Terminology and concepts81

See also the Apertis glossary3 for background information on terminology.82

1https://pipewire.org/
2https://pipewire.github.io/pipewire/
3https://www.apertis.org/glossary/

3

https://pipewire.org/
https://pipewire.github.io/pipewire/
https://www.apertis.org/glossary/
https://pipewire.org/
https://pipewire.github.io/pipewire/
https://www.apertis.org/glossary/

Standalone setup83

A standalone setup is an installation of Apertis which has full control of the84

audio driver. Apertis running in a virtual machine is an example of a standalone85

setup.86

Hybrid setup87

A hybrid setup is an installation of Apertis in which the audio driver is not fully88

controlled by Apertis. An example of this is when Apertis is running under an89

hypervisor or using an external audio router component such as GENIVI audio90

manager4. In this case, the Apertis system can be referred to as Consumer91

Electronics domain (CE), and the other domain can be referred to as Automotive92

Domain (AD).93

Different audio sources for each domain94

Among others, a standalone Apertis system can generate the following sounds:95

• Application sounds96

• Bluetooth sounds, for example music streamed from a phone or voice call97

sent from a handsfree car kit98

• Any kind of other event sounds, for example somebody using the SDK can99

generate event sounds using an appropriate command line100

A hybrid Apertis system can generate the same sounds as a standalone sys-101

tem, plus some additional sounds not always visible to Apertis. For example,102

hardware sources further down the audio pipeline such as:103

• FM Radio104

• CD Player105

• Driver assistance systems106

In this case, some interfaces should be provided to interact with the additional107

sound sources.108

Mixing, corking, ducking109

Mixing is the action of playing simultaneously from several sound sources.110

Corking is a request from the audio router to pause an application.111

Ducking is the action of lowering the volume of a background source, while112

mixing it with a foreground source at normal volume.113

Playing, paused, stopped114

Playing describes the stream state when an audio stream is played.115

4http://docs.projects.genivi.org/AudioManager/

4

http://docs.projects.genivi.org/AudioManager/
http://docs.projects.genivi.org/AudioManager/
http://docs.projects.genivi.org/AudioManager/
http://docs.projects.genivi.org/AudioManager/

Paused describes the state where an ongoing audio stream is suspended. When116

resuming, the stream shall restart from the point where it has been paused, if117

possible.118

Stopped describes the state where no audio output is played. When resuming,119

the stream starts from scratch.120

Use cases121

The following section lists examples of usages requiring audio management. It122

is not an exhaustive list, unlimited combinations exists. Discussion points will123

be highlighted at the end of some use cases.124

Application developer125

An application developer uses the SDK in a virtual machine to develop an126

application. He needs to play sounds. He may also need to record sounds or127

test their application on a reference platform. This is a typical standalone setup.128

Car audio system129

In a car, Apertis is running in a hypervisor sharing the processor with a real130

time operating system controlling the car operations. Apertis is only used for131

applications and web browsing. A sophisticated Hi-Fi system in installed under132

a seat and accessible via a network interface. This is a hybrid setup.133

Different types of sources134

Some systems classify application sound sources in categories. It’s important to135

note that no standard exists for those categories.136

Both standalone and hybrid systems can generate different sound categories.137

Example 1 In one system of interest, sounds are classified as main sources,138

and interrupt sources. Main sources will generally represent long duration sound139

sources. The most common case are media players, but it could be sound sources140

emanating from web radio, or games. As a rule of thumb, the following can be141

used: when two main sources are playing at the same time, neither is intelligible.142

Those will often require an action from the user to start playing, should it be143

turn ignition on, press a play button on the steering wheel or the touchscreen.144

As a consequence, only policy mechanisms ensure that only one main source can145

be heard at a time.146

Interrupt sources will generally represent short duration sound sources, they147

are emitted when an unsolicited event occurs. This could be when a message is148

received in any application or email service.149

5

Example 2 In another system of interest, sounds are classified as main150

sources, interrupt sources and chimes. Unlike the first example, in this system,151

a source is considered a main source if it is an infinite or loopable source, which152

can only be interrupted by another main source such FM radio or CD player.153

Interrupt sources are informational sources such as navigation instructions, and154

chimes are unsolicited events of short duration. Each of these sound sources155

is not necessarily generated by an application. It could come from a system156

service instead.157

Navigation instruction158

While some music from FM Radio is playing, a new navigation instruction has159

to be given to the driver: the navigation instructions should be mixed with the160

music.161

Traffic bulletin162

Many audio sources can be paused. For example, a CD player can be paused,163

as can media files played from local storage (including USB mass storage), and164

some network media such as Spotify.165

While some music from one of these sources is playing, a new traffic bulletin166

is issued: the music could be paused and the traffic bulletin should be heard.167

When it is finished, the music can continue from the point where the playback168

was paused.169

By their nature, some sound sources cannot be paused. For example, FM or170

DAB radio cannot be paused.171

While some music from a FM or DAB radio is playing, a new traffic bulletin172

is issued. Because the music cannot be paused, it should be silenced and the173

traffic bulletin should be heard. When it is finished, the music can be heard174

again.175

Bluetooth can be used when playing a game or watching live TV. As with the176

radio use-case, Bluetooth cannot be paused.177

USB drive178

While some music from the radio is playing, a new USB drive is inserted. If179

setting automatic playback from USB drive is enabled, the Radio sound stops180

and the USB playback begins.181

Rear sensor sound182

While some music from the radio is playing, the driver selects rear gear, the rear183

sensor sound can be heard mixed with the music.184

6

Blind spot sensor185

While some music from Bluetooth is playing, a car passes through the driver’s186

blind spot: a short notification sound can be mixed with the music.187

Seat belt188

While some music from the CD drive is playing, the passenger removes their189

seat belt: a short alarm sound can be heard mixed with the music.190

Phone call191

While some music from the CD drive is playing, a phone call is received: the192

music should be paused to hear the phone ringing and being able to answer the193

conversation. In this case, another possibility could be to notify the phone call194

using a ring sound, mixed in the music, and then pause the music only if the195

call is answered.196

Resume music197

If music playback has been interrupted by a phone call and the phone call has198

ended, music playback can be resumed.199

VoIP200

The driver wishes to use internet telephony/VoIP without noticing any difference201

due to being in a car.202

Emergency call priority203

While a phone call to emergency services is ongoing, an app-bundle process204

attempts to initiate lower-priority audio playback, for example playing music.205

The lower-priority audio must not be heard. The application receives the infor-206

mation that it cannot play.207

Mute208

The user can press a mute hard-key5. In this case, and according to OEM-209

specific rules, all sources of a specific category could be muted. For example, all210

main sources could be muted. The OEM might require that some sources are211

never muted even if the user pressed such a hard-key.212

Audio recording213

Some apps might want to initiate speech recognition. They need to capture214

input from a microphone.215

5https://www.apertis.org/concepts/hardkeys/

7

https://www.apertis.org/concepts/hardkeys/
https://www.apertis.org/concepts/hardkeys/

Microphone mute216

If the user presses a “mute microphone”button (sometimes referred to as a “se-217

crecy”button) during a phone call, the sound coming from the microphone218

should be muted. If the user presses this button in an application during a219

video conference call, the sound coming from the microphone should be muted.220

Application crash221

The Internet Radio application is playing music. It encounters a problem and222

crashes. The audio manager should know that the application no longer exists.223

In an hybrid use case, the other audio routers could be informed that the audio224

route is now free. It is then possible to fall back to a default source.225

Web applications226

Web applications should be able to play a stream or record a stream.227

Control malicious application228

An application should not be able to use an audio role for which it does not229

have permission. For example, a malicious application could try to simulate a230

phone call and deliver advertising.231

Multiple roles232

Some applications can receive both a standard media stream and traffic infor-233

mation.234

External audio router235

In order to decide priorities, an external audio router can be involved. In this236

case, Apertis would only be providing a subset of the possible audio streams,237

and an external audio router could take policy decisions, to which Apertis could238

only conform.239

Non-use-cases240

Automatic actions on streams241

It is not the purpose of this document to discuss the action taken on a media242

when it is preempted by another media. Deciding whether to cork or silence a243

stream is a user interface decision. As such it is OEM dependent.244

Streams’priorities245

The audio management framework defined by this document is intended to246

provide mechanism, not policy: it does not impose a particular policy, but247

instead provides a mechanism by which OEMs can impose their chosen policies.248

8

Multiple independent systems249

Some luxury cars may have multiple IVI touchscreens and/or sound systems,250

sometimes referred to as multi-seat6 (please note that this jargon term comes251

from desktop computing, and one of these “seats”does not necessarily correspond252

to a space where a passenger could sit). We will assume that each of these “seats”253

is a separate container, virtual machine or physical device, running a distinct254

instance of the Apertis CE domain.255

Requirements256

Standalone operation257

The audio manager must support standalone operation, in which it accesses258

audio hardware directly (Application developer).259

Integrated operation260

The audio manager must support integrated operation, in which it cannot access261

the audio hardware directly, but must instead send requests and audio streams262

to the hybrid system. (Different types of sources, External audio router).263

Priority rules264

It must be possible to implement OEM-specific priority rules, in which it is265

possible to consider one stream to be higher priority than another.266

When a lower-priority stream is pre-empted by a higher-priority stream, it must267

be possible for the OEM-specific rules to choose between at least these actions:268

• silence the lower-priority stream, with a notification to the application so269

that it can pause or otherwise minimise its resource use (corking)270

• leave the lower-priority stream playing, possibly with reduced volume271

(ducking)272

• terminate the lower-priority stream altogether273

It must be possible for the audio manager to lose the ability to play audio274

(audio resource deallocation). In this situation, the audio manager must notify275

the application with a meaningful error.276

When an application attempts to play audio and the audio manager is unable277

to allocate a necessary audio resource (for example because a higher-priority278

stream is already playing), the audio manager must inform the application using279

an appropriate error message. (Emergency call priority)280

6https://www.apertis.org/concepts/multiuser/#multi-seat-logind-seats

9

https://www.apertis.org/concepts/multiuser/#multi-seat-logind-seats
https://www.apertis.org/concepts/multiuser/#multi-seat-logind-seats

Multiple sound outputs281

The audio manager should be able to route sounds to several sound outputs. (282

Different types of sources).283

Remember preempted source284

It should be possible for an audio source that was preempted to be remembered285

in order to resume it after interruption. This is not a necessity for all types286

of streams. Some OEM-specific code could select those streams based on their287

roles. (Traffic bulletin, Resume music)288

Audio recording289

App-bundles must be able to record audio if given appropriate permission. (290

Audio recording)291

Latency292

The telephony latency must be as low as possible. The user must be able to293

hold a conversation on the phone or in a VoIP application without noticing any294

form of latency. (VoIP)295

Security296

If some faulty or malicious application tries to play or record an audio stream297

for which permission wasn’t granted, the proposed audio management design298

should not allow it. (Application crash, Control malicious application)299

Muting output streams300

During the time an audio source is preempted, the audio framework must notify301

the application that is providing it, so that the application can make an attempt302

to reduce its resource usage. For example, a DAB radio application might stop303

decoding the received DAB data. (Mute, Traffic bulletin)304

Muting input streams305

The audio framework should be able to mute capture streams. During that306

time, the audio framework must notify the application that are using it, so307

that the application can update user interface and reduce its resource usage. (308

Microphone mute)309

Control source activity310

Audio management should be able to set each audio source to the playing,311

stopped or paused state based on priority. (Resume music)312

10

Per stream priority313

We might want to mix and send multiple streams from one application to the314

automotive domain. An application might want to send different types of alert.315

For instance, a new message notification may have higher priority than ‘some316

contact published a new photo’. (Multiple roles)317

GStreamer support318

PipeWire includes 2 GStreamer elements called pipewiresrc and pipewiresink,319

which can be used in GStreamer’s pipelines.320

PipeWire provides a device monitor as well so that gst-device-monitor-1.0321

shows the PipeWire devices and a camera application will automatically use322

the PipeWire video source when possible.323

Approach324

PulseAudio embeds a default audio policy so, for instance, if you plug an head-325

set on your laptop aux slot, it silences the laptop speakers. PipeWire has no326

embedded logic to do that, and relies on something else to control it, which327

suites the needs for Apertis better since it also targets special use-cases that328

don’t really match the desktop ones, and this separation brings more flexibility.329

WirePlumber7 is a service that provides the policy logic for PipeWire. It’s330

where the policies like the one above is implemented, but unlike PulseAudio is331

explicitly designed to let people define them using LUA scripts and they are332

also what AGL has used to replace their previous audio manager in their latest333

Happy Halibut 8.0.0 release8.334

The overall approach is to adopt WirePlumber as the reference solution, but the335

separation between audio management and audio policy means that product336

teams can replace it with a completely different implementation with ease.337

Stream metadata in applications338

PipeWire provides the ability to attach metadata to a stream. The func-339

tion pw_fill_stream_properties()9 is used to attach metadata to a stream340

during creation. The current convention in usage is to use a metadata341

named media.role, which can be set to values describing the nature of the342

stream, such as Movie, Music, Camera, Notification, ⋯(defined in PipeWire’s343

PW_KEY_MEDIA_ROLE10), but not limited to them. This list of roles344

should be well defined between applications and WirePlumber.345

7https://gitlab.freedesktop.org/pipewire/wireplumber
8https://wiki.automotivelinux.org/agl-distro/release-notes#happy_halibut
9https://pipewire.github.io/pipewire/classpw__pipewire.html#a841dbb7608dc9cdda4a3

20d33fbbd39a
10https://docs.pipewire.org/group__pw__keys.html#ga7e7dcf769f9e253b0e3cde6534fee

d69

11

https://gitlab.freedesktop.org/pipewire/wireplumber
https://wiki.automotivelinux.org/agl-distro/release-notes#happy_halibut
https://pipewire.github.io/pipewire/classpw__pipewire.html#a841dbb7608dc9cdda4a320d33fbbd39a
https://docs.pipewire.org/group__pw__keys.html#ga7e7dcf769f9e253b0e3cde6534feed69
https://docs.pipewire.org/group__pw__keys.html#ga7e7dcf769f9e253b0e3cde6534feed69
https://docs.pipewire.org/group__pw__keys.html#ga7e7dcf769f9e253b0e3cde6534feed69
https://gitlab.freedesktop.org/pipewire/wireplumber
https://wiki.automotivelinux.org/agl-distro/release-notes#happy_halibut
https://pipewire.github.io/pipewire/classpw__pipewire.html#a841dbb7608dc9cdda4a320d33fbbd39a
https://pipewire.github.io/pipewire/classpw__pipewire.html#a841dbb7608dc9cdda4a320d33fbbd39a
https://docs.pipewire.org/group__pw__keys.html#ga7e7dcf769f9e253b0e3cde6534feed69
https://docs.pipewire.org/group__pw__keys.html#ga7e7dcf769f9e253b0e3cde6534feed69

See also GStreamer support.346

Requesting permission to use audio in applications347

Each audio role is associated with a permission. Before an application can start348

playback a stream, the audio manager will check whether it has the permission349

to do so. See Identification of applications. Application bundle metadata11350

describes how to manage the permissions requested by an application. The351

application can also use bundle metadata to store the default role used by all352

streams in the application if this is not specified at the stream level.353

Audio routing principles354

The request to open an audio route is emitted in two cases:355

• when a new stream is created356

• before a stream changes state from Paused to Playing (uncork)357

In both cases, before starting playback, the audio manager must check the358

priority against the business rules, or request the appropriate priority to the359

external audio router. If the authorization is not granted, the application should360

stop trying to request the stream and notify the user that an undesirable event361

occurred.362

If an application stops playback, the audio manager will be informed. It will in363

turn notify the external audio router of the new situation, or handle it according364

to business rules.365

An application that has playback can be requested to pause by the audio man-366

ager, for example if a higher priority sound must be heard.367

Applications can use the PipeWire event API to subscribe to events. In partic-368

ular, applications can be notified about their mute status. If an event occurs,369

such as mute or unmute, the callback will be executed. For example, an applica-370

tion playing media from a source such as a CD or USB storage would typically371

respond to the mute event by pausing playback, so that it can later resume from372

the same place. An application playing a live source such as on-air FM radio373

cannot pause in a way that can later be resumed from the same place, but would374

typically respond to the mute event by ceasing to decode the source, so that it375

does not waste CPU cycles by decoding audio that the user will not hear.376

Standalone routing module maps streams metadata to priority An377

internal priority module can be written. This module would associate a priority378

to all differents streams’metadata. It is loaded statically from the config file.379

See Routing data structure example for an example of data structure.380

11https://www.apertis.org/concepts/application-bundle-metadata/

12

https://www.apertis.org/concepts/application-bundle-metadata/
https://www.apertis.org/concepts/application-bundle-metadata/

Hybrid routing module maps stream metadata to external audio381

router calls In the hybrid setup, the audio routing functions could be im-382

plemented in a separate module that maps audio events to automotive domain383

calls. However this module does not perform the priority checks. Those are384

executed in the automotive domain because they can involve a different feature385

set.386

Identification of applications387

Flatpak applications are wrapped in containers and are identified by an unique388

app-id which can be used by the policy manager. Such app-id is encoded in the389

name of the transient systemd scope wrapping each application instance12 and390

can be retrieved easily.391

If AppArmor support is added to Flatpak, AppArmor profiles could also be392

used to securely identify applications.393

Web application support Web applications are just like any other applica-394

tion. However, the web engine JavaScript API does not provide a way to select395

the media role. All streams emanating from the same web application bundle396

would thus have the same role. Since each web application is running in its own397

process, AppArmor can be used to differentiate them. Web application support398

for corking depends on the underlying engine. WebKitGTK+ has the necessary399

support. See changeset 14581113.400

Implementation of priority within streams401

The policy manager should be able to cork streams: when a new stream with a402

certain role is started, all other streams within a user defined list of roles will403

get corked.404

Corking streams405

Depending on the audio routing policy, audio streams might be “corked”,406

“ducked”or simply silenced (moved to a null sink).407

As long as the role is properly defined, the application developer does not have408

to worry about what happens to the stream except corking. Corking is part of409

PipeWire API and can happen at any time. Corking should be supported by410

applications. It is even possible that a stream is corked before being started.411

If an application is not able to cork itself, the audio manager should enforce412

corking by muting the stream as soon as possible. However, this has the side413

effect that the stream between the corking request and the effective corking414

in the application will be lost. A threshold delay can be implemented to give415

an application enough time to cork itself. The policy of the external audio416

12https://github.com/flatpak/flatpak/wiki/Sandbox#the-current-flatpak-sandbox
13https://trac.webkit.org/changeset/145811

13

https://github.com/flatpak/flatpak/wiki/Sandbox#the-current-flatpak-sandbox
https://trac.webkit.org/changeset/145811
https://github.com/flatpak/flatpak/wiki/Sandbox#the-current-flatpak-sandbox
https://trac.webkit.org/changeset/145811

manager must also be considered: if this audio manager has already closed the417

audio route when notifying the user, then the data will already be discarded. If418

the audio manager synchronously requests pause, then the application can take419

appropriate time to shutdown.420

Ensuring a process does not overrides its priorities Additionally to421

request a stream to cork, a stream could be muted so any data still being422

received would be silenced.423

GStreamer support424

GStreamer support is straightforward. pipewiresink support the stream-425

properties parameter. This parameter can be used to specify the media.role.426

The GStreamer pipeline states already changes from GST_STATE_PLAYING to427

GST_STATE_PAUSED when corking is requested.428

Remembering the previously playing stream429

If a stream was playing and has been preempted, it may be desirable to switch430

back to this stream after the higher priority stream is terminated. To that effect,431

when a new stream start playing, a pointer to the stream that was currently432

playing (or an id) could be stored in a stack. The termination of a playing433

stream could restore playback of the previously suspended stream.434

Using different sinks435

A specific media.role metadata value should be associated to a priority and a436

target sink. This allows to implement requirements of a sink per stream category.437

For example, one sink for main streams and another sink for interrupt streams.438

The default behavior is to mix together all streams sent to the same sink.439

Default media role440

If an audio stream does not have the media.role property set, the policy will441

assign the Default media role name to it. In addition to this, if the Default442

endpoint can not be found, the policy will link the stream audio node with the443

lowest priority endpoint.444

This allows users to assign a particular endpoint for streams that don’t have the445

media.role property set.446

Routing data structure example447

The following table document routing data for defining a A-IVI inspired stream448

routing. This is an example, and in an OEM variant of Apertis it would be449

replaced with the business rules that would fulfill the OEM’s requirements450

14

App-bundle metadata defines whether the application is allowed to use this451

audio role, if not defined, the application is not allowed to use the role. From452

the role, priorities between stream could be defined as follows:453

In a standalone setup:454

role priority sink action
music 0 (lowest) main_sink cork
phone 7 (highest) main_sink cork
ringtone 7 (highest) alert_sink mix
customringtone 7 (highest) main_sink cork
new_email 1 alert_sink mix
traffic_info 6 alert_sink mix
gps 5 main_sink duck

In a hybrid setup, the priority would be expressed in a data understandable455

by the automotive domain. The action meaning would be only internal to CE456

domain. Since the CE domain do not know what is happening in the automotive457

domain.458

role priority sink action
music MAIN_APP1 main_sink cork
phone MAIN_APP2 main_sink cork
ringtone MAIN_APP3 alert_sink mix
customringtone MAIN_APP3 main_sink cork
new_email ALERT1 alert_sink mix
traffic_info INFO1 alert_sink mix
gps INFO2 main_sink mix

WirePlumber policy samples459

All the policies in WirePlumber are completely scriptable and written in Lua.460

The Lua API Documentation can be found here14.461

The default roles, priorities and related actions are defined in /usr/share/wireplumber/policy.lua.d/50-462

endpoints-config.lua and can be re-written to /etc/wireplumber/policy.lua.d/50-463

endpoints-config.lua to support the standalone setup defined in Routing data464

structure example:465

default_policy.policy.roles = {466

-- main sink467

["Multimedia"] = { ["priority"] = 0, ["action.default"] = "cork", ["alias"] = { "Movie", "Music", "Game" }, },468

["GPS"] = { ["priority"] = 5, ["action.default"] = "duck", },469

14https://pipewire.pages.freedesktop.org/wireplumber/lua_api.html

15

https://pipewire.pages.freedesktop.org/wireplumber/lua_api.html
https://pipewire.pages.freedesktop.org/wireplumber/lua_api.html

["Phone"] = { ["priority"] = 7, ["action.default"] = "cork", ["alias"] = { "CustomRingtone" }, },470

471

-- alert sink472

["New_email"] = { ["priority"] = 1, ["action.default"] = "mix", },473

["Traffic_info"] = { ["priority"] = 6, ["action.default"] = "mix", },474

["Ringtone"] = { ["priority"] = 7, ["action.default"] = "mix", },475

}476

477

default_policy.endpoints = {478

["endpoint.multimedia"] = { ["media.class"] = "Audio/Sink", ["role"] = "Multimedia", },479

["endpoint.gps"] = { ["media.class"] = "Audio/Sink", ["role"] = "GPS", },480

["endpoint.phone"] = { ["media.class"] = "Audio/Sink", ["role"] = "Phone", },481

["endpoint.ringtone"] = { ["media.class"] = "Audio/Sink", ["role"] = "Ringtone", },482

["endpoint.new_email"] = { ["media.class"] = "Audio/Sink", ["role"] = "New_email", },483

["endpoint.traffic_info"] = { ["media.class"] = "Audio/Sink", ["role"] = "Traffic_info", },484

}485

And, for example, a policy to automatically switch Bluetooth from A2DP to486

HSP/HFP profile when a specific application starts, e.g. Zoom, could be defined487

like:488

#!/usr/bin/wpexec489

--490

-- WirePlumber491

--492

-- Copyright © 2021 Collabora Ltd.493

-- @author George Kiagiadakis <george.kiagiadakis@collabora.com>494

--495

-- SPDX-License-Identifier: MIT496

--497

-- This is an example of a standalone policy making script. It can be executed498

-- either on top of another instance of wireplumber or pipewire-media-session,499

-- as a standalone executable, or it can be placed in WirePlumber's scripts500

-- directory and loaded together with other scripts.501

--502

-- The script basically watches for a client application called503

-- "ZOOM VoiceEngine", and when it appears (i.e. Zoom starts), it switches504

-- the profile of all connected bluetooth devices to the "headset-head-unit"505

-- (a.k.a HSP Headset Audio) profile. When Zoom exits, it switches again the506

-- profile of all bluetooth devices to A2DP Sink.507

--508

-- The script can be customized further to look for other clients and/or509

-- change the profile of a specific device, by customizing the constraints.510

--511

-512

513

devices_om = ObjectManager {514

16

Interest { type = "device",515

Constraint { "device.api", "=", "bluez5" },516

}517

}518

519

clients_om = ObjectManager {520

Interest { type = "client",521

Constraint { "application.name", "=", "ZOOM VoiceEngine" },522

}523

}524

525

function set_profile(profile_name)526

for device in devices_om:iterate() do527

local index = nil528

local desc = nil529

530

for profile in device:iterate_params("EnumProfile") do531

local p = profile:parse()532

if p.properties.name == profile_name then533

index = p.properties.index534

desc = p.properties.description535

break536

end537

end538

539

if index then540

local pod = Pod.Object {541

"Spa:Pod:Object:Param:Profile", "Profile",542

index = index543

}544

545

print("Setting profile of '"546

.. device.properties["device.description"]547

.. "' to: " .. desc)548

device:set_params("Profile", pod)549

end550

end551

end552

553

clients_om:connect("object-added", function (om, client)554

print("Client '" .. client.properties["application.name"] .. "' connected")555

set_profile("headset-head-unit")556

end)557

558

clients_om:connect("object-removed", function (om, client)559

print("Client '" .. client.properties["application.name"] .. "' disconnected")560

17

set_profile("a2dp-sink")561

end)562

563

devices_om:activate()564

clients_om:activate()565

Testability566

The key point to keep in mind for testing is that several applications can execute567

in parallel and use PipeWire APIs (and the library API) concurrently. The568

testing should try to replicate this. However testing possibilities are limited569

because the testing result depends on the audio policy.570

Application developer testing The application developer is requested to571

implement corking and error path. Testing those features will depend on the572

policy in use.573

Having a way to identify the lowest and highest priority definition in the policy574

could be enough for the application developer. Starting a stream with the lowest575

priority would not succeed if a stream is already running. Starting a stream with576

the highest priority would cork all running streams.577

The developer may benefit from the possibility to customize the running policy.578

Testing the complete design Testability of the complete design must be579

exercised from application level. It consist of emulating several applications580

each creating independent connections with different priorities, and verifying581

that the interactions are reliable. The policy module could be provisionned582

with a dedicated test policy for which the results are already known.583

Requirements584

This design fulfill the following requirements:585

• Standalone operation and Integrated operation are provided using sepa-586

rate sets of configuration files.587

• Priority rules are provided by the policy manager.588

• the audio manager library interface is aware of Multiple sound outputs.589

• Remember preempted source can be implemented in the policy manager.590

• Audio recording will use the same mechanisms.591

• Latency is implemented by not adding additional audio processing layer.592

• Security is implemented by relying on the Flatpak containerization, which593

could be further hardened by adding AppArmor support.594

• Muting output streams and Control source activity uses PipeWire corking595

infrastructure.596

• Per stream priority uses the PipeWire API.597

• GStreamer support is provided indirectly thanks to existing plugins.598

18

Open questions599

Roles600

• Do we need to define roles that the application developer can use?601

It’s not possible to guarantee that an OEM’s policies will not nullify an602

audio role that is included in Apertis. However, if we do not provide603

some roles, there is no hope of ever having an application designed for one604

system work gracefully on another.605

• Should we define roles for input?606

Probably, yes, speech recognition input could have a higher priority than607

phone call input. (Imagine the use case where someone is taking a call,608

is not currently talking on the call, and wants to change their navigation609

destination: they press the speech recognition hard-key, tell the navigation610

system to change destination, then input switches back to the phone call.)611

• Should we define one or several audio roles not requiring permission for612

use?613

No, it is explicitly recommended that every audio role requires permission.614

An app-store curator from the OEM could still give permission to every615

application requesting a role.616

Policies617

• How can we ensure matching between the policy and application defined618

roles?619

Each permission in the permission set should be matched with a media620

role. The number of different permissions should be kept to a minimum.621

• Should applications start stream corked?622

It must be done on both the application side and the audio manager side.623

Applications cannot be trusted. As soon as a stream opens, the PipeWire624

process must cork it - before the first sample comes out. Otherwise a ma-625

licious application could play undesirable sounds or noises while the audio626

manager is still thinking about what to do with that stream. The au-627

dio manager might be making this decision asynchronously, by asking for628

permission from the automotive domain. The audio manager can choose629

uncork, leave corked or kill, according to its policies. On the application630

side, it is only possible to suggest the best way for an application to behave631

in order to obtain the best user experience.632

• Should we use media.role or define an apertis specific stream property?633

19

Summary of recommendations634

• PipeWire is adopted as audio router and WirePlumber as policy manager.635

• Applications keep using the PulseAudio API or higher level APIs like636

GStreamer to be compatible with the legacy system.637

• The default WirePlumber policy is extended to address the use-cases de-638

scribed here.639

• Static sets of configuration files can implement different policies depending640

on hybrid setup or standalone setup.641

• Each OEM must derive from those policies to implement their business642

rules.643

• WirePlumber must be modified to check that the application have the644

permission to use the requested role and, if the media.role is not provided645

in the stream, it must check if a default value is provided in the application646

bundle metadata.647

• If AppArmor support is made available in Flatpak, WirePlumber must be648

modified to check for AppArmor identity of client applications.649

• The application bundle metadata contains a default audio role for all650

streams within an application.651

• The application bundle metadata must contain a permission request for652

each audio role in use in an application.653

• For each stream, an application can choose an audio role and communicate654

it to PipeWire at stream creation.655

• The policy manager monitors creation and state changes of streams.656

• Depending on business rules, the policy manager can request an applica-657

tion to cork or mute.658

• GStreamer’s pipewiresink support a stream.properties parameter.659

• A tool for corking a stream could be implemented.660

20

	Terminology and concepts
	Standalone setup
	Hybrid setup
	Different audio sources for each domain
	Mixing, corking, ducking
	Playing, paused, stopped

	Use cases
	Application developer
	Car audio system
	Different types of sources
	Navigation instruction
	Traffic bulletin
	USB drive
	Rear sensor sound
	Blind spot sensor
	Seat belt
	Phone call
	Resume music
	VoIP
	Emergency call priority
	Mute
	Audio recording
	Microphone mute
	Application crash
	Web applications
	Control malicious application
	Multiple roles
	External audio router

	Non-use-cases
	Automatic actions on streams
	Streams’ priorities
	Multiple independent systems

	Requirements
	Standalone operation
	Integrated operation
	Priority rules
	Multiple sound outputs
	Remember preempted source
	Audio recording
	Latency
	Security
	Muting output streams
	Muting input streams
	Control source activity
	Per stream priority
	GStreamer support

	Approach
	Stream metadata in applications
	Requesting permission to use audio in applications
	Audio routing principles
	Identification of applications
	Implementation of priority within streams
	Corking streams
	GStreamer support
	Remembering the previously playing stream
	Using different sinks
	Default media role
	Routing data structure example
	WirePlumber policy samples
	Testability
	Requirements

	Open questions
	Roles
	Policies

	Summary of recommendations

