
Moving to Gitlab issues

Contents1

Current status 22

Organization . 33

Fields in Phabricator . 34

Templates in Phabricator . 35

QA Report App . 36

Apertimes . 47

Workflow with Phabricator . 48

Proposal 59

Fields in Gitlab . 610

Templates in Gitlab . 711

Permissions . 712

Management data and view . 713

Workflow . 814

Summary 815

Export/import 916

Migration 917

Steps 1018

Apertis is an Open Source project which has been growing sustainable during19

the past years. This growth also made it spread across different projects and20

teams, requiring Apertis to improve the tools it uses. In this regard, one issue21

that prevents Apertis to be really open is the fact that the bug tracking system22

is only open to maintainers making it hard for the community to report new23

bugs or to keep track of them.24

Since everyone can have access to Gitlab, the most reasonable approach would25

be to use Gitlab issues for the bug tracking. The current document describes26

the plan for the migration.27

Current status28

Nowadays Apertis uses Phabricator1 to track bugs but it is only accessible29

to users with privileges, such as maintainers or developers. One additional30

drawback is that Phabricator is an open source tool which is no longer supported31

upstream2.32

1https://phabricator.apertis.org
2https://www.phacility.com/phabricator/

2

https://phabricator.apertis.org
https://www.phacility.com/phabricator/
https://www.phacility.com/phabricator/
https://www.phacility.com/phabricator/
https://phabricator.apertis.org
https://www.phacility.com/phabricator/

Organization33

Currently bugs are treated as Phabricator tasks with a bug related tag such as34

bug, bug (warranty), bug (not-warranty). The meaning of these tags are35

only important for the management team inside Apertis, and has no value for36

the community.37

Bugs can also have additional tags which allows:38

• Release: Bugs can be tagged with a release such as v2021 or v2022 to39

describe that the issue is present in specific releases.40

• Test-failure: This tag is used to denote bugs that are reported during the41

QA process, either from an automated test in LAVA or from a manual42

test.43

• Topic: Additional tags such as infrastructure, licensing can be added44

to allow easy filtering of possible connected issues.45

The current workflow relies mostly on the warranty/not-warranty, test-failure46

and on the release tags.47

Fields in Phabricator48

Phabricator supports special fields that help both developers and the manage-49

ment team to keep track of the progress. The list of fields are:50

• Priority: Defines a priority for the issue, possible values: highest, high,51

needs triage, normal, low, default value needs triage52

• Status: Keeps track of the progress of the work, possible values: un-53

confirmed, confirmed, in progress, proposed, submitted, resolved,54

verified, closed, wont fix, default value unconfirmed55

• Visible to: Used to configure some tasks only visible to a group of people56

• Tags: Project defined tags57

• Subscribers: List of people that get a notification on changes, members of58

the management team.59

Templates in Phabricator60

Currently Phabricator presents a pre-formated bug form3 page to create a new61

bug task. This helps developers to keep a consistent format across bugs, as well62

as avoiding missing important information.63

QA Report App64

Quality Assurance in Apertis is managed through QA Report App web inter-65

face4 which summarizes the report for all the supported releases. These report66

are the result of running Apertis test cases5 on images either from an automated67

3https://phabricator.apertis.org/maniphest/task/edit/form/8/
4https://qa.apertis.org/
5https://qa.apertis.org/

3

https://phabricator.apertis.org/maniphest/task/edit/form/8/
https://qa.apertis.org/
https://qa.apertis.org/
https://qa.apertis.org/
https://qa.apertis.org/
https://phabricator.apertis.org/maniphest/task/edit/form/8/
https://qa.apertis.org/
https://qa.apertis.org/

or manual test.68

Automated tests are run on image creation using LAVA and results are reported69

back to QA Report App. On test failures this application automatically gener-70

ates either a new bug or append new entries if a previous open bug for the same71

test case is found.72

Since some test cannot be completely automated a set of them are run manually.73

The results of these tests are submitted to QA Report App in order to have a74

common source of information. In case of failure, following the same approach75

as for the automated tests, either a new bug or a new comment in an open bug76

is introduced.77

Apertimes78

Management team inside Apertis uses apertimes to track progress of the79

project. This tool retrieves task information from Phabricator to generate re-80

ports.81

Workflow with Phabricator82

The current workflow used for bug tracking can be described through these83

steps:84

• Bug report: A Phabricator task is created when a new bug is found, there85

can be three situations:86

– Manual report base on user work: In some cases a user performing87

some kind of work might notice some unexpected behavior. In this88

case the user is encourage to create a new bug using the bug form6.89

– Manual report based on test suite: Apertis provides a test suite7 for90

its releases, some of which need to be run manually. When the QA91

process is run a failure is reported through the bug form8.92

– Automatic report based on LAVA jobs: As mentioned the test suite993

includes automated tests that are run on LAVA. QA Report App94

automatically creates a bug on failures.95

On bug reporting it is important to try to include as much accurate information96

as possible. In this regard, a proper title, description and tags can help on later97

steps.98

• Bug triage: On weekly basis the list of bugs is checked and new bugs are99

triaged with a priority as mentioned in Fields in Phabricator. Additionally,100

during this process for bugs with highest or high priority that require101

urgent attention, a developer is assigned. In other cases, developers claim a102

6https://phabricator.apertis.org/maniphest/task/edit/form/8/
7https://qa.apertis.org/
8https://phabricator.apertis.org/maniphest/task/edit/form/8/
9https://qa.apertis.org/

4

https://phabricator.apertis.org/maniphest/task/edit/form/8/
https://qa.apertis.org/
https://phabricator.apertis.org/maniphest/task/edit/form/8/
https://qa.apertis.org/
https://phabricator.apertis.org/maniphest/task/edit/form/8/
https://qa.apertis.org/
https://phabricator.apertis.org/maniphest/task/edit/form/8/
https://qa.apertis.org/

bug based on the priorities and their skills. Additionally, tags can be added103

to make it easier to connect related bugs and to help the management team104

to keep track of the task in progress.105

• Once a developer starts to work on a bug they change the status to in106

progress and updates the task regularly with the progress.107

• After debugging, a solution is designed and proposed, usually by submit-108

ting a Draft Merge Request10 to discuss the approach. When doing this109

status is updated to proposed, to show that there is a proposed possible110

fix for the issue.111

• During the review process different things can happen112

– The proposed solution is accepted by a developer with experience in113

the field in which case it can be merged. This is usually the case for114

small fixes.115

– The proposed solution is accepted but additional work needs to be116

done to fix the issue. This goes from additional work on the MR or a117

new MR with additional changes. In this case when additional MR118

are submitted the status can be changed to submitted.119

– In some cases the root cause of the problem is in an upstream issue,120

from which information or feedback is required. Under such circum-121

stances, the status can be updated to show that the developer is122

waiting for upstream by setting it as upstream.123

• When all the MR are merged and no additional work needs to be done the124

status should be updated to resolved.125

• Finally, the reporter can check if the issue is solved in which case the126

status should be changed to verified. If the reporter has doubts about127

the issue, he can request additional information and set the status to128

need info.129

• In some cases, after investigating a bug, evaluate its impact and the pos-130

sible solutions the best action is not to fix it. A good example of this case131

are packages no longer supported. In order to make this clear the status132

should be updated to wont fix.133

During all the steps described any developer can add comments to help to fix134

the issue. It is also possible that members of the management team queries the135

the status of the bugs.136

Proposal137

As previously mentioned, given all the Apertis related projects are already138

hosted in Gitlab, the use of Gitlab issues is natural. For this, Gitlab provides139

10https://gitlab.apertis.org/dashboard/merge_requests?scope=all&utf8=%E2%9C%93&s
tate=opened&assignee_id=None

5

https://gitlab.apertis.org/dashboard/merge_requests?scope=all&utf8=%E2%9C%93&state=opened&assignee_id=None
https://gitlab.apertis.org/dashboard/merge_requests?scope=all&utf8=%E2%9C%93&state=opened&assignee_id=None
https://gitlab.apertis.org/dashboard/merge_requests?scope=all&utf8=%E2%9C%93&state=opened&assignee_id=None

a per project issue tracking system which is the best approach to handle de-140

velopment. Gitlab also support incidents, but those are focused on service141

disruption.142

However, since Apertis is an Open Source Distribution, the mindset is different,143

each individual upstream project usually has its own bug tracking system, while144

Apertis focus on tracking issues from a distribution’s integration point of view.145

Also, requiring contributors to first find the right project to report the issue146

will not be user friendly, and as consequence some users will avoid reporting the147

problem or possibly report it to the wrong project.148

For these reasons, the recommendation is to create a new single project for bug149

tracking, which will also help the management team, since there will be a new150

different issue id for every new issue. This is the same approach Debian uses in151

its bug tracking system11.152

This approach has also the advantage of making transition from Phabricator153

easier as issues will be migrated to only one project.154

During the migration open bugs in Phabricator will be added to Gitlab with155

title, description, priority, status and tags set. In the description, a link to the156

Phabricator task will be added to more easily check the history. Importing the157

history is not recommended since there could be sensitive data, additionally158

comments also wouldn’t have a correct datetime set. For closed bugs, since159

there is no value on importing them without the history the recommendation is160

to keep them only in Phabricator.161

After the import, which is one time operation, Gitlab issues will be the main162

repository for open or new bugs.163

The use of tags in Phabricator can be emulated in Gitlab with labels, making164

the transition almost transparent for end users.165

However the use of tags for private management is discouraged since all informa-166

tion is made public. This topic will be covered in more detail in the Management167

data and view section.168

Fields in Gitlab169

Gitlab issues does not provide the same fields, however, similar functionality170

can be implemented using labels12. To do so, for each field a set of labels should171

be created for every possible value, providing also additional flexibility.172

For example, to implement the priority field, a set of labels priority: highest,173

priority: high, priority: normal and priority: low should be created. The174

same approach can be used for status since it also has a defined set of possible175

values.176

11https://bugs.debian.org
12https://docs.gitlab.com/ee/user/project/labels.html

6

https://bugs.debian.org
https://docs.gitlab.com/ee/user/project/labels.html
https://bugs.debian.org
https://docs.gitlab.com/ee/user/project/labels.html

However the visibility field does not make much sense on this approach since177

the plan behind this task is to openly show the bug tracking system to the178

community, in the same way other Open Source projects do. In case of an179

exception, Gitlab supports the use of confidential issues13 which has visibility180

set to only team members.181

Tags can be easily implemented by labels since they have the same behavior,182

providing a very flexible way of connecting issues.183

Finally, subscribers can be handled using the Gitlab notifications14. Issues184

templates can be configured to notify people about new activity by sending185

an email allowing all team members to be informed. Gitlab supports different186

[notification levels] providing a way for users to configure them according to their187

needs. Since the template will issue a mention to a default list of subscribers,188

everyone in that list who have not disabled notification will receive an e-mail189

on bug report and in subsequent comments.190

Templates in Gitlab191

Gitlab templates15 are used to have a common pattern to report bugs. Gitlab192

supports creating templates using markdown and thus allowing an easy way to193

import the current Phabricator templates.194

The management of templates is straightforward since they are file located in195

the .gitlab/issue_templates folder, so the creation, modification and deletion196

can be handled thorough merge requests, which also helps traceability.197

Permissions198

As described in permissions16, Gitlab supports different roles in a project and199

since bugs will be a new one, permissions can be easily adjusted as needed.200

In order to provide public access to reported issues, contributors need to be201

assigned the role of guest to the project. In this way they can create issues but202

won’t be able to change labels or assign them after creation.203

Management data and view204

Gitlab issues is a powerful tool to keep track of different tasks, in this case205

bugs. However, due to the private nature of some aspects of these tasks some206

information should be placed in a different location.207

On the public project useful information can be included to help the manage-208

ment team, as example new labels based on bug-type should be used:209

13https://docs.gitlab.com/ee/user/project/issues/confidential_issues.html
14https://docs.gitlab.com/ee/user/profile/notifications.html
15https://docs.gitlab.com/ee/user/project/description_templates.html
16https://docs.gitlab.com/ee/user/permissions.html

7

https://docs.gitlab.com/ee/user/project/issues/confidential_issues.html
https://docs.gitlab.com/ee/user/profile/notifications.html
https://docs.gitlab.com/ee/user/project/description_templates.html
https://docs.gitlab.com/ee/user/permissions.html
https://docs.gitlab.com/ee/user/project/issues/confidential_issues.html
https://docs.gitlab.com/ee/user/profile/notifications.html
https://docs.gitlab.com/ee/user/project/description_templates.html
https://docs.gitlab.com/ee/user/permissions.html

• bug-type:apertis: To denote a bug that appeared in Apertis due to work210

done inside Apertis project211

• bug-type:upstream: To denote a bug that appeared in Apertis due to a212

bug also present upstream213

Any private information should be placed in a different location, such as a214

private GitLab project or an external tool, and the mapping between issues and215

management data should be performed manually.216

The easiest way to implement this is to keep private information in Phabricator217

as it is the tool currently used, reducing the complexity of the solution. With218

this approach bugs will be handled on Gitlab issues but a Phabricator task will219

be created and linked to track private management information. To make this220

possible a tool should be developed to create a Phabricator task based on a221

Gitlab issue with the same title and a description, including a link, referencing222

it. The management team will use this task to track only private data. Lastly,223

since management data will remain available in Phabricator, apertimes tool224

doesn’t require any update, making the transition easier.225

For public data, to have a high level overview of bugs, Gitlab support boards17226

which provide a kanban style interface. Boards columns can be configured based227

on labels, so the initial approach could be to have a board which shows bugs228

grouped by priority, which should help tracking the most important issues. It229

is also possible to create multiple issue boards per project, to highlight other230

aspects, such as bug-type.231

Workflow232

The current workflow will suffer only minimal changes after switching to Gitlab233

issues. All the steps described in [Workflow with Phabricator] can be followed234

using Gitlab issues, however, with the new approach task will be automatically235

created and linked to Phabricator to allow the management team to hold private236

data.237

Summary238

The table below shows a summary for the mapping between Phabricator and239

Gitlab features/information:240

Phabricator Gitlab
Organization Tasks with tag bug Gitlab issues on new project
Priority field Internal field Label with prefix priority

Status field Internal field Label with prefix status

Asignee field Internal field Internal field

17https://docs.gitlab.com/ee/user/project/issue_board.html

8

https://docs.gitlab.com/ee/user/project/issue_board.html
https://docs.gitlab.com/ee/user/project/issue_board.html

Phabricator Gitlab
Templates Supported Supported
Permissions Supported Supported
Management view Workboard Gitlab boards
Information type Public and private Public information only

Export/import241

A key point during the migration is the export and import task, which should242

end up with all the open bugs in Phabricator available as Gitlab issues.243

The desired data to be migrated is:244

• Title245

• Description with a link to the original Phabricator task246

• Priority247

• Status248

• Tags249

In this regard there are some tools already available such as import from csv18250

and import from Phabricator19. These tools only allow to import title and251

description, so importing additional information requires building a tool based252

on the Phabricator and Gitlab API. Creating such a tool will likely be rather253

simple though.254

Migration255

The migration should be planned with enough time before a quarter ends in256

order to have a stable system previous to the release dates. It is a pre-requisite257

that the QA Report App is updated to support Gitlab issues and a set of tools258

are developed, one to create and mirror Phabricator tasks based on Gitlab issues,259

and another to [Export/import] Phabricator tasks into Gitlab issues.260

For the actual migration, first a clean up of the current open bugs list should261

be performed, to avoid importing useless information. After this point, a freeze262

period should be started to guarantee that no modification to the bugs is made263

on Phabricator during the migration. This freeze period will be divided in two,264

a hard freeze and a soft one.265

During the hard freeze the export/import operation will be triggered, which266

will end with a production test to confirm that all bugs have been migrated and267

tools work as expected. The main purpose of this tests is to spot any blocker for268

considering Gitlab issues as the main bug repository. For any no-blocker issue269

a task will be created. The estimation for this hard freeze period is one day.270

18https://docs.gitlab.com/ee/user/project/issues/csv_import.html
19https://docs.gitlab.com/ee/user/project/import/phabricator.html

9

https://docs.gitlab.com/ee/user/project/issues/csv_import.html
https://docs.gitlab.com/ee/user/project/import/phabricator.html
https://docs.gitlab.com/ee/user/project/issues/csv_import.html
https://docs.gitlab.com/ee/user/project/import/phabricator.html

During the soft freeze period, adding bugs will be enabled only with strict control271

for just a few people to allow further tests to be run and to fix minor issues.272

The estimation for this soft freeze period is 3 days. In case that no issues are273

found the soft freeze period will be reduced.274

If during the hard freeze period a blocker issue is found which will be unable to275

fix during the hard freeze, the migration will be aborted and a new migration276

schedule will be planned.277

Steps278

• Create test environment on Gitlab279

• Enhance QA Report App to report failure to Gitlab issues instead of280

Phabricator281

• Create script to export bugs282

• Cleanup bug list283

• Hard freeze bug report/update on Phabricator284

• Export bug list285

• Import bugs list286

• Perform production test287

• Soft freeze bug report/update on Gitlab288

• Additional tests and controlled bug report289

• Unfreeze bug report/update on Gitlab290

[Workflow with Phabricator] #workflow-with-phabricator291

10

	Current status
	Organization
	Fields in Phabricator
	Templates in Phabricator
	QA Report App
	Apertimes
	Workflow with Phabricator

	Proposal
	Fields in Gitlab
	Templates in Gitlab
	Permissions
	Management data and view
	Workflow

	Summary
	Export/import
	Migration
	Steps

