
Apertis Platform Technical Vision

Contents1

Overview 22

Fixed function device scenario 33

HMI device scenario 44

Focus area Flatpak applications . 55

(Industrial) IOT scenario 66

Focus area container runtime . 77

SDK scenario 78

Overview9

The intention of this document is to outline the Apertis technical direction and10

vision for the Apertis platform as it would be used on a device, container or11

VM.12

This document does not cover the overall Apertis infrastructure and its general13

principles around for example open source license expectations1, image build-14

ing2 and the release process3. These topics are covered in their own respective15

documents.16

Apertis is, by design, a very flexible platform to build on. However, as a project17

we cannot directly support and test every possible setup that can be built using18

Apertis. Because of that our development and testing is focused on a few specific19

hardware reference platforms4 which can be used as the basis to explore a wide20

range of use-cases. Apertis users are of course still free to choose their hardware21

platforms and configure their systems differently, utilising as much or as little22

of that provided by Apertis as they see fit!23

The following sections look at various scenarios in which Apertis can be used on24

devices and the technical building blocks that Apertis intends to make available25

for them. As such they all describe a reasonably full-featured setup for each26

scenario, however an actual deployment can still choose to only use a subset of27

available features.28

As this document provides a forward-looking vision of the Apertis platform not29

all features mentioned are yet implemented or even fully defined.30

1https://www.apertis.org/policies/license-expectations/
2https://www.apertis.org/guides/image_building/
3https://www.apertis.org/guides/apertis_release_process/
4https://www.apertis.org/reference_hardware/

2

https://www.apertis.org/policies/license-expectations/
https://www.apertis.org/guides/image_building/
https://www.apertis.org/guides/image_building/
https://www.apertis.org/guides/image_building/
https://www.apertis.org/guides/apertis_release_process/
https://www.apertis.org/reference_hardware/
https://www.apertis.org/policies/license-expectations/
https://www.apertis.org/guides/image_building/
https://www.apertis.org/guides/apertis_release_process/
https://www.apertis.org/reference_hardware/

Fixed function device scenario31

This setup represents an “appliance”or fixed function devices. That is to say32

the device is intended to be used for a specific functionality which cannot be ex-33

tended by installing extra software on top of the base system. This scenario also34

assumes it’s operating in a headless fashion without a comprehensive graphical35

user interface. It is still possible to have some amount of user interactions for ex-36

ample via simple buttons or knobs for user inputs and lights and/or segmented37

displays for outputs, however typical inputs and outputs for these devices will38

be attached peripherals and sensors.39

Typically these devices are expected to be connected to an IP network and have40

the ability to either directly or indirectly connected to internet services (e.g. via41

ethernet, wifi, 5G).42

As security and integrity is paramount the device supports a fully verified boot43

sequence (secure boot, verified boot or similar) to ensure untampered firmware,44

kernel, etc are used. The system (root) filesystem is integrity measured for all45

executables to get a fully trusted system.46

To further improve integrity and privacy of the system a Trusted Execution envi-47

ronment is available for trusted applications (e.g. optee). The TEE environment48

or a dedicated chip (e.g. TPM) are available to support remote attestation as49

well support for encrypted areas (filesystems etc) which can only be accessed by50

a specific device and only when it has been booted into a known state.51

On the running OS systemd5 for overall system startup and management. This52

also includes managing the usage of linux capabilities, resource constraints, sys-53

tem call filtering, sandboxing of services through linux namespaces and provid-54

ing start-on-demand as well as watchdog services.55

On top of systemd the Apparmor LSM is used to further constraint the be-56

haviour of system processes and provide a second line of protection increasing57

the defense in depth.58

In the current world of software nothing is secure if it’s not also up to date59

with the latest security fixes. As such the system comes with an ostree based60

over the air update system with the capability to integrate with cloud device61

management and fleet management systems such as Hawkbit.62

Building upon the fleet management integration, while updates provide one63

piece of the puzzle telemetric support provides another aspect to enable remote64

management and monitoring of devices.65

As a lot of this functionality needs network access, so of course Apertis supports66

various ways of accessing networks whether this is via wired connection, wifi or67

mobile networks.68

5https://www.freedesktop.org/wiki/Software/systemd/

3

https://www.freedesktop.org/wiki/Software/systemd/
https://www.freedesktop.org/wiki/Software/systemd/

feature documentation status
Verified boot sequence fully verified boot sequence6 Implemented
Integrity validate root filesystem Security7 Concept: Requires Update
Filesystem Encryption
Trusted Execution Environment Trusted Execution Environment8 Concept: Up-to-date
System service lifecycle management system startup and management9 Partially Implemented
Apparmor (LSM) Apparmor10 Implemented
OTA/system upgrade OSTree based11 Implemented
OTA Fleet management Preparing hawkBit for Production Use12 Concept: Up-to-date
Network connectivity Connectivity13 Concept: Requires Update

HMI device scenario69

This setup is targeted at devices with a HMI. Typically this will be a modern70

graphical user interface driven via a touch-screen and/or other inputs as well as71

the capability of audio in and outputs. Some devices may also have one or more72

cameras or other sensors attached. Furthermore these devices can be extended73

via the installation of user-facing applications.74

As a basis these devices have all the features and capabilities of the fixed function75

device scenario.76

On top of this base functionality a user interface is available to launch different77

applications or functions via a touch-screen or other inputs. This user interface is78

composed from a base wayland compositor which can be re-used and customised79

for specific projects, for Apertis a reference UX shell is available in the form of80

the maynard compositor.81

For video inputs as well as audio input and output pipewire is used as a routing82

daemon with wireplumber adding policy support. This allows multiple applica-83

tions to use these streams at the same time while also being able to prioritise84

between them and implement more complex policies like for example audio85

ducking.86

The additions of applications to the system can be done via the installation87

of flatpak-based application bundles, which allows applications to be installed88

with minimal dependencies on the base system. This also makes it possible to89

have separate update lifecycles for applications and the base operating system90

6https://www.apertis.org/architecture/secure-boot/
7https://www.apertis.org/concepts/security/
8https://www.apertis.org/concepts/op-tee/
9https://www.apertis.org/architecture/boot_process/

10https://www.apertis.org/guides/apparmor/
11https://www.apertis.org/guides/ostree/
12https://www.apertis.org/concepts/preparing-hawkbit-for-production/
13https://www.apertis.org/concepts/connectivity/

4

https://www.apertis.org/architecture/secure-boot/
https://www.apertis.org/concepts/security/
https://www.apertis.org/concepts/op-tee/
https://www.apertis.org/architecture/boot_process/
https://www.apertis.org/guides/apparmor/
https://www.apertis.org/guides/ostree/
https://www.apertis.org/concepts/preparing-hawkbit-for-production/
https://www.apertis.org/concepts/connectivity/
https://www.apertis.org/architecture/secure-boot/
https://www.apertis.org/concepts/security/
https://www.apertis.org/concepts/op-tee/
https://www.apertis.org/architecture/boot_process/
https://www.apertis.org/guides/apparmor/
https://www.apertis.org/guides/ostree/
https://www.apertis.org/concepts/preparing-hawkbit-for-production/
https://www.apertis.org/concepts/connectivity/

as typically applications are updated at a far shorter cycle then the operating91

system itself. The usage of flatpak-based applications also enables the imple-92

mentation of dynamic policies for what resources are available for an application.93

For example camera access might only be allowed for some applications.94

Flatpak applications can either be provisioned via a fleet management system95

(such as Hawkbit) or from a “app store”application available on the system with96

application specific download methods.97

feature documentation status
Reference HMI shell and compositor Application Framework14 Concept: Up-to-date
Bluetooth Connectivity: Bluetooth Support15 Concept: Requires Update
System toolkit
Virtual system keyboard On-screen keyboard16 Concept: ⋯
Audio routing and policy Audio management17 Concept: Up-to-date
Video routing and policy
Application framework integration Application framework18 Concept: Up-to-date
Application management (store or fleet) hawkBit19 Partially Implemented
Removable storage management

Focus area Flatpak applications98

As Flatpak applications are decoupled from the base system they are essentially99

their own dedicated setup.100

To be able to easily build Flatpak applications targeting Apertis systems, while101

still taking the benefits of the Apertis maintenance, dedicated Apertis runtime102

including SDK variants and debug extensions (needed for development) will be103

provided. These runtime will include a basic set of libraries for libraries to rely104

on.105

However certain applications or devices can have special needs for the libraries106

available in their standard runtime. Custom runtimes can also be created as107

needed.108

For some devices specific extra or different libraries can be required. For example109

to support a device specific GL or Vulkan stack or device specific codec libraries.110

These can be shipped as a flatpak runtime extension, allowing multiple devices111

to use the same base runtimes but adjust as needed to take full advantage of112

the underlying hardware.113

14https://www.apertis.org/concepts/application-framework/#compositor-libweston
15https://www.apertis.org/concepts/connectivity/#bluetooth-support
16https://www.apertis.org/concepts/on-screen-keyboard/
17https://www.apertis.org/concepts/audio-management/
18https://www.apertis.org/concepts/application-framework/
19https://www.apertis.org/guides/deployment-management/

5

https://www.apertis.org/concepts/application-framework/#compositor-libweston
https://www.apertis.org/concepts/connectivity/#bluetooth-support
https://www.apertis.org/concepts/on-screen-keyboard/
https://www.apertis.org/concepts/audio-management/
https://www.apertis.org/concepts/application-framework/
https://www.apertis.org/guides/deployment-management/
https://www.apertis.org/concepts/application-framework/#compositor-libweston
https://www.apertis.org/concepts/connectivity/#bluetooth-support
https://www.apertis.org/concepts/on-screen-keyboard/
https://www.apertis.org/concepts/audio-management/
https://www.apertis.org/concepts/application-framework/
https://www.apertis.org/guides/deployment-management/

Apart from this base infrastructure application may also have a need to access114

peripherals, sensors, audio inputs and outputs as well as other lower-level system115

interfaces. For this purpose flatpaks concepts of portals will be used, which116

allows the system to apply applications specific policies and permissions. An117

example policy is whether a given application can access the devices camera118

potentially only after explicit user interaction.119

feature documentation link status
Apertis supported Flatpak runtimes
Runtime extensions for HW specific support
Flatpak System API access (portals)
Flatpak audio and video routing
Creation of Flatpaks

(Industrial) IOT scenario120

Another area in which Apertis focuses is industrial IOT. In a sense these devices121

are close to fixed function devices in that they’ve got little to no ability to support122

user interaction. However these are not fixed function devices, these devices are123

targeted at running “edge”workloads with the ability to dynamically manage124

which devices run specific workloads.125

Typically these devices collect data on the edge either directly by containing var-126

ious sensors (e.g. cameras, power measurement, temperature etc) or indirectly127

via other devices on a local network (which could be fixed function apertis de-128

vices). The role of these devices typically is to process all these inputs in some129

fashion and either act on them or relay it to a cloud infrastructure.130

To allow workloads to be flexible they will be executed as containerized work-131

loads; These containers are distributed and run using the open container initia-132

tive (OCI) standards. Apertis will include an open-source workload orchestrater133

to interact with a management system to orchestrate deployments.134

Another role an edge device can take is as an orchestrator for deploying soft-135

ware updates or workloads to secondary devices. For example an accompanying136

microcontroller running a real time operating system or a separate network-137

attached system which is not (or cannot be) directly connected to the internet.138

The orchestrater is able to manage and push updates to these devices.139

feature documentation link status
OCI container orchestration
Remote firmware deployment
Remote workload deployment
OCI container management

6

Focus area container runtime140

Like Flatpaks OCI images to be run on a device are separate from the main141

system to decouple the two. OCI images are the standard way of distributing142

cloud workload for network services which is a good and natural fit for the143

workloads on edge devices. This allows the Apertis device to take advantage of144

common workflows developers are used to for building images targeting cloud145

deployments.146

The other benefit of using OCI standards is the potential to use/consider differ-147

ent CRI20 implementations, including implementations using hypervisor tech-148

nology to allow for increased separation of host and container than typically149

available on namespace based container systems.150

feature documentation link status
Guidelines for OCI container deployments
OCI container building
OCI container integration with system API

SDK scenario151

The final area is the SDK environment; While not really a product as such,152

ease of development is a critical aspect for the success of Apertis. To enable153

smooth development Apertis provides a pre-build virtual machine for develop-154

ment (which in a sense is yet another device). This is preinstalled with all the155

tooling required to locally build all aspects of the Apertis universe such as:156

• Build Debian packages for target devices157

• Build full system images158

• Build Flatpak applications159

• Build OCI images160

Apart from building, deployment and debugging should be as easy as possible.161

To support that, tooling is included to directly provision the various artifacts162

to local devices (depending on the device installation of course).163

feature documentation link status
Debian package building (devroot, sysroot) sysroots and devroots21 Implemented
System image building (debos) Image building22 Implemented
Flatpak image building
OCI image building
SDK development environment (IDE) SDK23 Implemented

20https://kubernetes.io/docs/concepts/architecture/cri/

7

https://kubernetes.io/docs/concepts/architecture/cri/
https://www.apertis.org/architecture/sysroots-and-devroots/
https://www.apertis.org/guides/image_building/
https://www.apertis.org/guides/virtualbox/
https://kubernetes.io/docs/concepts/architecture/cri/

feature documentation link status
Local Device deployment/debugging ADE24 Implemented: Requires Update

21https://www.apertis.org/architecture/sysroots-and-devroots/
22https://www.apertis.org/guides/image_building/
23https://www.apertis.org/guides/virtualbox/
24https://www.apertis.org/guides/ade/

8

https://www.apertis.org/guides/ade/
https://www.apertis.org/architecture/sysroots-and-devroots/
https://www.apertis.org/guides/image_building/
https://www.apertis.org/guides/virtualbox/
https://www.apertis.org/guides/ade/

	Overview
	Fixed function device scenario
	HMI device scenario
	Focus area Flatpak applications

	(Industrial) IOT scenario
	Focus area container runtime

	SDK scenario

