
Preparing hawkBit for Production Use

Contents1

Introduction 22

Evaluation Report 33

Server configuration . 34

Considering the production workflow 35

Management UI access . 56

Enabling device filtering . 57

Provisioning for multiple product teams or partners 58

Life management of artifacts . 69

Platform scalability . 610

Recommendation 611

Server Configuration . 612

Considering the production workflow 613

Management UI access . 714

Enabling device filtering . 715

Provisioning for multiple product teams or partners 716

Life management of artifacts . 717

Platform scalability . 718

Introduction19

The Apertis project has been experimenting with the use of Eclipse hawkBit1 as20

a mechanism for the deployment of system updates2 and applications3 to target21

devices in the field. The current emphasis is being placed on system updates,22

though hawkBit can also be used to address different software distribution use23

cases such as to distribute system software, updates and even apps from an app24

store.25

Apertis has recently deployed a hawkBit instance4 into which the image build26

pipelines5 are uploading builds. The apertis-hawkBit-agent6 has been added to27

OSTree based images and a guide produced detailing how this can be used to28

deploy updates to an Apertis target7.29

The current instance is proving valuable for gaining insight into how hawkBit30

can be used as part of the broader Apertis project. hawkBit is already in use31

elsewhere, notably by Bosch as part of its IoT infrastructure8, however more32

1https://www.eclipse.org/hawkbit/
2https://www.apertis.org/concepts/system-updates-and-rollback/
3https://www.apertis.org/concepts/application-framework/#the-app-store
4https://hawkbit.apertis.org
5https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/pipelines
6https://gitlab.apertis.org/pkg/apertis-hawkbit-agent
7https://www.apertis.org/guides/deployment-management/
8https://docs.bosch-iot-rollouts.com/documentation/index.html

2

https://www.eclipse.org/hawkbit/
https://www.apertis.org/concepts/system-updates-and-rollback/
https://www.apertis.org/concepts/application-framework/#the-app-store
https://hawkbit.apertis.org
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/pipelines
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/pipelines
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/pipelines
https://gitlab.apertis.org/pkg/apertis-hawkbit-agent
https://www.apertis.org/guides/deployment-management/
https://docs.bosch-iot-rollouts.com/documentation/index.html
https://www.eclipse.org/hawkbit/
https://www.apertis.org/concepts/system-updates-and-rollback/
https://www.apertis.org/concepts/application-framework/#the-app-store
https://hawkbit.apertis.org
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/-/pipelines
https://gitlab.apertis.org/pkg/apertis-hawkbit-agent
https://www.apertis.org/guides/deployment-management/
https://docs.bosch-iot-rollouts.com/documentation/index.html

work is required to reach the point where the Apertis infrastructure (or a deploy-33

ment based on the Apertis infrastructure) would be ready for production use. In34

this document we will describe the steps we feel that need to be taken to provide35

a reference deployment that could be more readily suitable for production.36

Evaluation Report37

Server configuration38

The current hawkBit deployment is hosted on Collabora’s infrastructure. The39

example Docker Compose configuration file9 has been modified to improve sta-40

bility, security and adding a reverse proxy providing SSL encryption. This has41

been wrapped with Chef10 configuration to improve maintainability. Whilst42

this configuration has limitations (that will be discussed later), it provides a43

better starting point for the deployment of a production system. These configu-44

ration files are currently stored in Collabora’s private infrastructure repository45

and thus not visible to 3rd parties.46

Considering the production workflow47

The currently enabled process for the enrollment and configuration of a target48

device into the hawkBit deployment infrastructure requires the following steps:49

• Install Apertis OSTree based image on the target device.50

• Define or determine the controllerid for the device. This ID needs to be51

unique on the hawkBit instance as it is used to identify the target.52

• Enroll the target on the hawkBit instance, either via the UI11 or API12.53

– If adding via the UI, hawkBit creates a security token, if adding via54

the API the security token can be generated outside of hawkBit.55

• Modify the configuration file for apertis-hawkbit-agent to contain the cor-56

rect URL for the hawkBit instance, the targets controllerid and the57

generated security token. This configuration file is /etc/apertis-hawkbit-58

agent.ini. Without these options being set, the target will be unable to59

find and access the deployment server to discover updates.60

This workflow presents a number of points that could prove contentious in a61

production environment:62

• A need for access to the hawkBit deployment server (that may be hosted on63

external cloud infrastructure) from the production environment to register64

the controllerid and security token.65

9https://github.com/eclipse/hawkbit/blob/master/hawkbit-runtime/docker/docker-
compose-stack.yml

10https://www.chef.io/
11https://www.eclipse.org/hawkbit/ui/#deployment-management
12https://www.eclipse.org/hawkbit/rest-api/targets-api-guide/#_post_rest_v1_targets

3

https://github.com/eclipse/hawkbit/blob/master/hawkbit-runtime/docker/docker-compose-stack.yml
https://www.chef.io/
https://www.eclipse.org/hawkbit/ui/#deployment-management
https://www.eclipse.org/hawkbit/rest-api/targets-api-guide/#_post_rest_v1_targets
https://github.com/eclipse/hawkbit/blob/master/hawkbit-runtime/docker/docker-compose-stack.yml
https://github.com/eclipse/hawkbit/blob/master/hawkbit-runtime/docker/docker-compose-stack.yml
https://www.chef.io/
https://www.eclipse.org/hawkbit/ui/#deployment-management
https://www.eclipse.org/hawkbit/rest-api/targets-api-guide/#_post_rest_v1_targets

• The requirement to have a mechanism to add configuration to the device66

post software load.67

The security token based mechanism is one of a number of options13 available68

for authentication via the DDI API. The security token must be shared between69

the target and the hawkBit server. This approach has a number of downsides:70

• The Token needs to added to the hawkBit server and tied to the target71

devices controllerid. This may necessitate a link between the production72

environment and an external network to access the hawkBit server.73

• The need for the shared token to be registered with the server for authen-74

tication would make it impossible to use the “plug n’play”enrollment of75

the target devices supported by hawkBit.76

hawkBit allows for a certificate based authentication mechanism (using a re-77

verse proxy before the hawkBit server to perform authentication) which would78

remove the need to share a security token with the server. Utilizing signed keys79

would allow authentication to be achieved independently from enrollment, thus80

allowing enrollment to be carried out at a later date and would remove the81

need to store data per device in the hawkBit from the production environment.82

hawkBit allows for “plug’n play14”enrollment, the enrollment of the device when83

it’s first seen by hawkBit, thus the device could potentially be enrolled once the84

end user has switched on the device and successfully connected it to a network85

for the first time when using certificate based authentication.86

For many devices it would not be practical or desired to have remote access into87

the production firmware to add device specific configuration, such as a security88

token or device specific signed key. apertis-hawkbit-agent currently expects89

such configuration to be saved in /etc/apertis-hawkbit-agent.ini. An option90

that this presents is for the image programmed onto the target to provide 291

OSTree commits, one with the software expected on the device when shipped92

and the other for factory use, with boot defaulting to the latter. OSTree will93

attempt to merge any local changes made to the configuration when updating94

the image. The factory image could be used to perform any testing and factory95

configuration tasks required before switching the device to the shipping software96

load. Customizations to the configuration made in the factory should then be97

merged as part of the switch to the shipping load, and the factory commit can be98

removed from the device. Such an approach could provide some remote access99

to the target as part of the factory commit, but not the shipping commit, thus100

avoiding remote access being present in the field.101

As previously mentioned, a unique controllerid is needed by hawkBit to identify102

the device and needs to be stored in the configuration file. An alternative103

approach may be to generated this ID from other unique data provided by the104

device, such as a MAC address or unique ID provided by the SoC used in the105

device.106

13https://www.eclipse.org/hawkbit/concepts/authentication/
14https://gitter.im/eclipse/hawkbit/archives/2016/07/27

4

https://www.eclipse.org/hawkbit/concepts/authentication/
https://gitter.im/eclipse/hawkbit/archives/2016/07/27
https://www.eclipse.org/hawkbit/concepts/authentication/
https://gitter.im/eclipse/hawkbit/archives/2016/07/27

Management UI access107

We currently have a number of static users defined with passwords available to108

trusted maintainers. Such as scheme is not going to scale in a production envi-109

ronment, nor provide an adequate level of security for a production deployment.110

hawkBit provides the ability to configure authentication using a provider im-111

plementing the OpenID Connect standard, which would allow for much greater112

flexibility in authenticating users.113

Enabling device filtering114

hawkBit provides functionality to perform update rollouts in a controlled way,115

allowing a subset of the deployed base to get an update and only moving on to116

more devices when a target percentage of devices have received the update and117

with a configurable error rate. When rolling out updates, in an environment118

where more than one hardware platform or revision of hardware is present, it119

will be necessary to be able to ensure the correct updates are targeted towards120

the correct devices. For example, two revisions of a gadget could use different121

SoCs with different architectures each requiring a different build of the update122

and different versions of a device may need to be updated with different streams123

of updates. In order to cater for such scenarios, it is important for hawkBit to be124

able to accurately distinguish between differing hardware. Support to achieve125

this is provided via hawkBit’s ability to store attributes. These attributes can be126

set by the target device via the DDI interface once enrolled and used by hawkBit127

to filter target devices into groups. At the moment the apertis-hawkbit-agent is128

not setting any attributes.129

Provisioning for multiple product teams or partners130

In order to use hawkBit for multiple products or partners it would be either131

beneficial or necessary for each to have some isolation from each other. This132

could be achieved via hawkBit’s multi-tenant functionality or via the deployment133

of multiple instances of hawkBit. It is likely that both of these options would be134

deployed depending on the demands and requirements of the product team or135

partner. It is expected that some partners may like to use a deployment server136

provided by Apertis or one of it’s partners. In this instance multi-tenancy would137

make sense. Others may wish to have their own instance, possibly hosted by138

themselves, in which case providing a simple way to deploy a hawkBit instance139

would be beneficial.140

Deploying multiple instances of hawkBit using the docker configuration would be141

trivial. The multi-tenant configuration requires the authentication mechanism142

for accessing the management API, web interface and potentially DDI API to143

be multi-tenant aware.144

5

Life management of artifacts145

The GitLab CI pipeline generally performs at least 2 builds a day, pushing146

multiple artifacts for each architecture and version of Apertis. In order to147

minimize the space used to store artifacts and so as not to store many defunct148

artifacts, they are currently deleted after 7 days.149

Whilst this approach enables the Apertis project to frequently exercise the arti-150

fact upload path and has been adequate for Apertis during it’s initial phase, a151

more comprehensive strategy will be required for production use. For shipped152

hardware, it is unlikely that any units will be updated as frequently. In addi-153

tion, depending on the form and function of the device, it may only poll the154

infrastructure to check for updates sporadically, either due to the device not155

needing to be on or not having access to a network connection capable of reach-156

ing the deployment server. Artifacts will needed to be more selectively kept to157

ensure that the most up-to-date version is kept available for each device type158

and hardware revision. Older artifacts that are no longer the recommended ver-159

sion should be safe to delete from hawkBit as no targets should be attempting160

to update to them.161

Platform scalability162

hawkBit provides support for clustering to scale beyond the bandwidth that a163

single deployment server could handle. The Apertis hawkBit instance is not164

expected to need to handle a high level of use, though this may be important to165

product teams who might quite quickly have many devices connected to hawkBit166

in the field.167

Recommendation168

Server Configuration169

• The improvements made to the Docker Compose configuration file should170

be published either in a publicly visible Apertis repository and/or improve-171

ments should be submitted back to the hawkBit project to be included in172

the reference Docker configuration.173

Considering the production workflow174

• The hawkBit deployment should be updated to use a signed key based175

security strategy.176

• apertis-hawkbit-agent should be improved to enable authentication via177

signed keys.178

• apertis-hawkbit-agent should be improved to auto-enroll when the target179

device is not already found.180

6

• apertis-hawkbit-agent is currently storing its configuration in /etc, this181

should be extended to look under /var and the default configuration should182

be moved there.183

• A mechanism should be added to apertis-hawkbit-agent to enable the con-184

trollerid to be generated from supported hardware sources.185

Management UI access186

• The Apertis hawkBit instance should be configured to use the OpenID au-187

thentication mechanism, ideally using the same SSO used to authenticate188

users for other Apertis resources.189

Enabling device filtering190

• Update apertis-hawkbit-agent to set attributes based on information191

known about the target device. This should include (where possible):192

– Device Architecture193

– Device Type194

– Device Revision195

Provisioning for multiple product teams or partners196

• Apertis does not have a direct need for a multi-tenant deployment nor197

for multiple deployments. Investigate and document what’s involved for198

setting up a multi-tenanted installation.199

Life management of artifacts200

• Apertis is developing a base platform to be used by production teams201

and thus the images it produces for it’s reference hardware needs a subtly202

different scheme15 from that which would be anticipated to be needed by a203

production team. It is therefore recommended that the process removing204

old artifacts should adhere to the following rules:205

– Retain all point releases for current Apertis releases206

– Retain 7 days of daily development builds207

– Delete all artifacts for versions of Apertis no longer supported208

Platform scalability209

• At this current point in time we do not feel that investigating platform210

scalability has immediate value.211

15https://www.apertis.org/architecture/long-term-reproducibility/

7

https://www.apertis.org/architecture/long-term-reproducibility/
https://www.apertis.org/architecture/long-term-reproducibility/

	Introduction
	Evaluation Report
	Server configuration
	Considering the production workflow
	Management UI access
	Enabling device filtering
	Provisioning for multiple product teams or partners
	Life management of artifacts
	Platform scalability

	Recommendation
	Server Configuration
	Considering the production workflow
	Management UI access
	Enabling device filtering
	Provisioning for multiple product teams or partners
	Life management of artifacts
	Platform scalability

