
Test case dependencies on immutable rootfs

Contents1

Possible solutions 22

Overview of applicable approach 33

Rework tests to ship their dependencies in ‘/var/lib/tests‘ 34

Pros: . 35

Cons: . 36

OStree branch or static deltas usage 37

Pros: . 38

Cons: . 49

OStree overlay . 410

Pros: . 411

Cons: . 412

Overall proposal 513

Create separate git repository for each test 514

Reduce dependencies . 515

Make test relocatable . 516

Immutable root filesystems have several security and maintainability advantages,17

and avoiding changes to them increases the value of testing as the system under18

test would closely match the production setup.19

This is fundamental for setups that don’t have the ability to install packages at20

runtime, like OSTree-based deployments, but it’s largely beneficial for package21

based setups as well.22

To achieve that, tests should then ship their own dependencies in a self-contained23

way and not rely on package installation at runtime.24

Possible solutions25

For adding binaries into OStree-based system, the following approaches are26

possible:27

• Build the tests separately on Jenkins and have them run from28

/var/lib/tests;29

• Create a Jenkins job to extract tests from their .deb packages shipped on30

OBS and to publish the results, so they can be run from /var/lib/tests;31

• Use layered filesystem for binaries install on top of testing image;32

• Publish a separate OStree branch for tests created at build time from the33

same OS pack as image to test;34

• Produce OStree static deltas at build time from the same OS pack as35

image to test with additional packages/binaries installed;36

2

• Create mechanism for dpkg similar to RPM-OStree project* to allow in-37

stallation of additional packages in the same manner as we have for now.38

– Creation of dpkg-ostree project will use a lot of time and human39

resources due to changes in dpkg and apt system utilities.40

Overview of applicable approach41

Rework tests to ship their dependencies in ‘/var/lib/tests‘42

Build the tests separately and have them run from /var/lib/tests or create a43

Jenkins job to extract tests from their .deb packages to /var/lib/tests44

Pros:45

• ‘clean’testing environment –the image is not polluted by additions, so tests46

and dependencies have no influence on SW installed on image47

• possibility to install additional packages/binaries in runtime48

Cons:49

• some binaries/scripts expect to find the dependencies in standard places50

–additional changes are needed to create the directory with relocated test51

tools installed52

• we need to be sure if SW from packages works well from relocated directory53

• additional efforts are needed to maintain 2 versions of some packages54

and/or packaging for some binaries/libraries might be tricky55

• can’t install additional packages without some preparations in a build time56

(save dpkg/apt-related infrastructure or create a tarball from pre-installed57

SW)58

• possible versions mismatch between SW installed into testing image and59

SW from tests directory60

• problems in dependencies installation are detected only in runtime61

OStree branch or static deltas usage62

Both approaches are based on native OStree upgrade/rollback mechanism –only63

transport differs.64

Pros:65

• test of OStree upgrade mechanism is integrated66

• easy to create and maintain branches for different groups of tests –so only67

SW needed for the group is installed during the tests68

• developer can obtain the same environment as used in LAVA in a few69

ostree commands70

3

• problems with installation of dependencies for the test are detected in a71

buildtime72

• the original image do not need to have wget, curl or any other tool for73

download –ostree tool have own mechanism for download needed commit74

from test branches75

• with OStree static deltas we are able to test ‘offline’upgrades without net-76

work access77

• saves a lot of disk space for infrastructure due OStree repository usage78

Cons:79

• ‘dirty’testing environment –the list of packages is not the same as we have80

in testing image; e.g. system places for binaries and libraries are used81

by additional packages installed, as well as changes in system configura-82

tion might occur (the same behavior we have in current test system with83

installation of additional packages via apt)84

• not possible to install additional packages at runtime85

• additional branch(es) should be created at build time86

• reboot is needed to apply the test environment87

• in case of OStree static deltas –creation of delta is an expensive operation88

in terms of time and resources usage89

OStree overlay90

Overlay is a native option provided by ostree project, re-mounting “/usr”direc-91

tory in R/W mode on top of ‘overlayfs’. This allows to add any software into92

“/usr”but changes will disappear just after reboot.93

Pros:94

• limited possibility to install additional packages at runtime (with saved95

state of dpkg and apt) –merged “/usr”is desirable96

• possibility to copy/unpack prepared binaries directly to “/usr”directory97

• able to use OStree pull/checkout mechanism to apply overlay98

Cons:99

• dirty testing environment –the list of packages is not the same as we have100

in testing image101

• OStree branch should contain only “/usr”if used. In other case need to use102

foreign for OStree methods to store binaries and/or filesystem tree103

• can’t apply additional software without some preparations in a build time104

(save dpkg/apt-related infrastructure, create a tarball from pre-installed105

SW or create an ostree branch)106

• possible versions mismatch between SW installed into testing image and107

SW from tests directory108

• problems in dependencies installation are detected only in runtime109

4

Overall proposal110

The proposal consist of a transition from a full apt based test mechanism to a111

more independent test mechanism.112

Each tests will be pulled of apertis-tests and moved to its own git repository.113

During the move, the test will be made relocatable, and its dependencies will114

be reduced.115

Dependencies that could not be removed would be added to the test itself.116

At any time, it would still be possible to run the old tests on the non OSTree117

platform. The new test that have already be transitioned could run on both118

OSTree and apt platforms.119

The following steps are envisioned.120

Create separate git repository for each test121

In order to run the tests on LAVA, the use of git is recommended. LAVA122

is already able to pull test definitions from git, but it can pull only one git123

repository for each test.124

To satisfy this constraint, each test definition, scripts, and dependencies must125

be grouped in a single git repository.126

In order to run the tests manually, GitLab is able to dynamically build a tarball127

with the content of a git repository at any time. The tarball can be retrieved128

at a specific URL. By specifying a branch other than master, a release-specific129

test can be generated. A tool such as wget or curl can be used, or it might be130

necessary to download the test tarball from a host, and copy it to the device131

under test using scp.132

Reduce dependencies133

To minimize impact of the tests dependencies on the target environment,134

some dependencies need to be dropped. For example, Python requires several135

megabytes of binaries and dependencies itself, so all the Python scripts will136

need to be rewritten using Posix shell scripts or compiled binaries.137

For tests using data files, the data should be integrated in the git repository.138

Make test relocatable139

Most of the tests rely on static path to find binaries. It is straightforward to140

modify a test to use a custom PATH instead of static one. This custom PATH would141

point to a subdirectory in the test repository itself.142

This applies to dependencies which could be relocated, such as statically linked143

binaries, scripts, and media files.144

5

For the test components that might not be ported easily, such as For example145

AppArmor profiles that are designed to work on binaries at fixed locations, a146

case-by-case approach needs to be taken.147

6

	Possible solutions
	Overview of applicable approach
	Rework tests to ship their dependencies in ‘/var/lib/tests`
	Pros:
	Cons:

	OStree branch or static deltas usage
	Pros:
	Cons:

	OStree overlay
	Pros:
	Cons:

	Overall proposal
	Create separate git repository for each test
	Reduce dependencies
	Make test relocatable

