
Apertis

Global Search

Design

Author: Derek Foreman
Contributors: Nirbheek Chauhan, Alvaro Soliverez
Version: 0.3.2
Status: Final
Date: 17. November 2015
Last Reviewer: Luis Araujo

This design was produced exclusively using free and open source software.

Please consider the environment before printing this document.

DOCUMENT CHANGE LOG
Version Date Changes

0.3.2 2015-11-16 • Updated to new name Apertis
• Removed file custom properties (metadata)

0.3.1 2014-12-11 • Updated to new template

0.3.0 2013-12-06 • Additional information on Zeitgeist and Persistence API
interaction

• Add example for SDK Persistence API
• Add related search workflow
• Add table with favorites and recent data for most popular

applications
• Updated search flow diagram

0.2.1 2013-07-29 • Incorporate changes from internal reviewers

0.2.0 2013-07-26 • Add section 8, Implementation Examples
• Add section 6.3, The SDK Persistence API
• Add data sources to Illustration 1: Search Flow

0.1.0 2013-02-18 • Add section 5.5 on progressively deeper searching
• Add chapter 4 on speech recognition
• “recent” should be auxiliary data, not a flag
• Remove “bookmarks” and merge them with “documents”
• Add radio stations to media
• Add weather as an example of an auxiliary property
• Auxiliary results can be returned with primary results (2.4)
• Add section 5.3 on searching the persistence framework

directly
• Allow adding new content categories from application

manifests
• Add example search flow diagram (7)
• Add chapter 9 on existing search software

0.0.2 2012-10-09 • Incorporate changes from internal reviewers

0.0.1 2012-10-01 • Initial version

Table of Contents
 Document Change Log..2
1 Introduction...4
2 Information Classification..5

2.1 Information Sources...5
2.2 Content Categories..5
2.3 Content Flags...6
2.4 Auxiliary Information..6

3 Search Priority...8
4 Speech Recognition..9
5 Guidelines...10

5.1 Decentralized Indexing..10
5.2 Extendable Via Plug-ins..10
5.3 Easy for Application Developers...11
5.4 Highly Responsive..11
5.5 Limited System Impact..12
5.6 Predictable Interaction...13
5.7 Balance of Configuration and Heuristics..13

6 Potential Search Back-ends...15
6.1 Primary Sources...15
6.2 Auxiliary Sources..16
6.3 The SDK Persistence API..16

7 Example Search Flow..18
8 Implementation Examples..21

8.1 Applications..21
8.2 Preferences..21
8.3 Documents...22
8.4 Media...22
8.5 Contacts...22
8.6 Events..22
8.7 Communications..23
8.8 Definitions..23
8.9 Locations..23

9 Using Existing Global Search Software...24
10 New Software Development..26
 Appendix A: References..27

Index of Illustrations
Illustration 1: Search Flow..19

1 INTRODUCTION
Apertis will store several types of information – media files, documents, contacts,
e-mails, applications and their preferences, chat logs, and more. Much of this
content will be stored with the application that generates or consumes it. A file
manager would be very cumbersome for finding content in all these locations, and
some of these data types are not strictly files. A powerful search system needs to
be implemented to facilitate convenient access to the user's data.

Not all interesting information is locally stored. Apertis may be equipped with an
internet connection and the user may want their search to include videos on
YouTube or text from Wikipedia.

If a GPS device is present, search results could potentially include nearby points of
interest like gas stations, coffee shops and museums.

Compiling and displaying search results from these varied sources is only a partial
solution. The interface should also allow interaction with the content – by
launching an appropriate handling application.

The goal of this document is to define global search in the context of Apertis and
establish guidelines for implementing an effective global search system.

2 INFORMATION CLASSIFICATION

2.1 INFORMATION SOURCES

There are two types of information sources available to Apertis for searching.

• Primary – Sources that are used in the generation of search results.

• Auxiliary – meta-information sources for providing further detail about a
primary search result.

The source types can be further broken down into three storage locations:

• Internal – data stored directly in the embedded Apertis device.

• External – data stored on a removable device. External devices can be
removed and have their data altered elsewhere, so care must be taken
when caching results.

• Remote – data available from the internet. Availability depends on
whether the Apertis device has network access, user preferences
governing network use, and the status of the remote service.

2.2 CONTENT CATEGORIES

The results returned from primary sources may be divided into broad categories:

• Applications – Installed applications, applications in the currently running
application stack, and perhaps software available from the application
store.

• Preferences – Application or global UI settings.

• Documents – Spreadsheets, presentations and word processor files. Web
pages, including the web browser's bookmarks, would also fall in this
category.

• Media – Photos, videos and music. This could also include radio stations,
both broadcast and internet.

• Contacts – E-mail, phone and chat contacts.

• Events – Important dates from a calendar application or social media
sites.

• Communications - Emails, SMS and conversation logs from chat services.

• Definitions – Dictionary entries and Wikipedia articles.

• Locations – Points of interest from the navigation software and the
current location.

Applications should provide a list of categories that apply to the content they
handle to allow the search framework to make intelligent decisions regarding the
scope of a search.

It is likely that some applications will want to extend the available set of
categories by providing new categories in their manifests. Collabora recommends
that developers wanting to add a new category are required to be approved by
the application store.

Allowing developers to specify their own content categories would reduce the
search front-end's ability to combine and prioritize similar results if applications
chose different category names that mean the same thing. The application store
would be able to approve or deny any request for a new category, and suggest re-
use of an existing category if appropriate.

Even the list above isn't completely orthogonal – definitions could be a subset of
documents. Special cases like this should only be considered if it's deemed that a
clear benefit arises from the separation.

2.3 CONTENT FLAGS

Search results can contain additional Boolean properties that may apply to all
categories. Collabora recommends a collection of flags to further qualify search
results in order to allow better sorting and presentation:

• Favorite – content with this tag has been selected by the user as high
priority – favorite radio stations, contacts, e-mail threads.

• Online – Activating some search results – such as browser bookmarks -
would require a data connection.

• Fee – The result leads to a service with a fee for usage. Examples could
include long distance phone calls, or application store software.

As with content categories, it may be useful to allow applications to specify new
flags in their manifests. The same concerns apply here as for categories, and the
application store should carefully consider which new flags are allowed.

2.4 AUXILIARY INFORMATION

In many cases, auxiliary data can be added to the search results either to provide
useful information to the user, or to assist the search manager in prioritizing
results more effectively:

• Frequency/recency of usage is useful for prioritizing search results.

• Presence information can be provided for contacts in search results.

• Thumbnails can be generated for local media.

• Weather can be provided for locations (with the current location either
settable as a preference, or taken from a GPS device)

• Distance from current location can be determined for locations – linear
distance can be determined quickly, but a driving distance would take
significantly longer.

• More advanced auxiliary information providers could look up movie

ratings and reviews from online services.

In some cases, such as presence information for contacts, the auxiliary
information is provided by the same library (libfolks) and at the same time as the
primary results. In other cases, the search manager may need to query auxiliary
data sources as an additional step.

Unlike flags and categories, auxiliary information can't be extended by application
manifests, since it must be fully understood by the search framework to be
displayed or utilized for priority calculations.

It is possible that a system will have multiple sources for the same auxiliary
information – perhaps a freshly installed system uses Google1 for querying
weather information. If a user then installs a third-party weather application, it
may be capable of providing more accurate forecasts.

Resolving which provider to use in situations like these may be difficult. Some
possible resolution methods would be:

• If an application is present on the user's home screen it will be selected.

• Most recently installed applications will be selected.

• The HMI could provide an interface for selecting the preferred provider.

While HMI intervention is not a preferred option, it may not always be possible to
infer the user's preference without assistance.

1 The Google Weather API actually ceased to exist in August of 2012 and is mentioned only for
illustrative purposes.

3 SEARCH PRIORITY
Not all information is of equal importance, and if a search has too large a number
of matches to display, the higher priority matches should come first. Since there
are many primary sources with differing response times, the results must be
prioritized or the fastest responders will dominate the results list.

Having a few different priority levels to assign the different categories to should
be sufficient:

• Top – Contacts and recently or frequently used items of all categories.

• High – Media, Documents and nearby locations.

• Medium – Applications and application settings.

• Low – E-mails, chat logs and SMS contents.

• Bottom – Pay-for-use services.

Within priority levels, information can be sorted with auxiliary information. For
locations, distance from current location could be a reasonable sort criteria. For
applications, the most recently used applications should likely be higher up the
list.

4 SPEECH RECOGNITION
Hands free operation is a necessity in an automotive user interface, and the
global search interface needs to be implemented with that as a primary goal.
Entering arbitrary words, and having the search framework update a list of results
while a request is being entered isn't possible with speech recognition.

The search framework needs to be designed to be accessed comfortably in two
different input modalities. By providing two search methods – a full search, and a
simplified keyword search, the same powerful search mechanisms can be
accessed easily by either voice or entered text.

The use of keywords for initiating and filtering searches will simplify verbal
interaction with the system and provide a fast and efficient interface. Category
names could also be recognized, allowing a quick interface to recently used items.

Applications should provide a list of keywords in their manifests to indicate the set
of keywords they may return in their search results. Allowing applications to add
new keywords from their manifests is likely less problematic for the search
interface than new categories or flags, and as such needs little or no application
store review. However, localization of category names and keywords is critical,
since Apertis may be deployed in multiple languages.

It may be worthwhile to hard code some response logic, such as “weather”
launching the preferred weather application, or having a short phrase like “switch
to <name of local radio station>” control the radio.

It would be simpler to do this than to try to fine tune the search system's
heuristics to cause this to naturally occur, and would prevent installation of a new
application (which might share keywords with installed applications) from
changing expected behavior.

5 GUIDELINES
Collabora feels the following features will help create a responsive, flexible and
convenient global search interface.

5.1 DECENTRALIZED INDEXING

Trying to store all these different types of data in a single central repository for
searching presents some difficult problems:

• If the on-disk format of the search database changes, a lengthy re-
indexing of all searchable content must take place.

• Remote content has dramatically different requirements than local
content, and may change or disappear.

• If an application's data is already in a conveniently searchable form,
storing a second copy of it in a database wastes storage space, cache
memory, processing time, and, potentially, decreases user interface
responsiveness.

Apertis has special considerations as well – the application rollback system also
governs the settings and data associated with an application. If a rollback is
performed, data in a central database would have to be purged and re-created.

Separating the search front-end from the database and allowing it to query
multiple sources for results will allow the use of many different available
components, allow searching remote content that can't be indexed, and allow for
search back-ends with different search strategies and response times to be
compiled into a single result list.

5.2 EXTENDABLE VIA PLUG-INS

Many desktop search applications2 aggregate data from several back-ends to
produce their search results. Each source has a plug-in specifically written to
process a certain kind of data and return standardized search results.

Allowing applications to be responsible for providing search results on their own
data enables them to provide more appropriate results than if a general purpose
service naively indexed everything on the system.

Applications would be able to provide their own plug-in, which may communicate
with an application agent3, to create a custom search back end for the
application's content.

Further, application search databases can be stored with the rest of the
application data in a way that allows application rollback to govern them as well,
so in the event of an application rollback search results will still be consistent with
the data and no lengthy re-indexing process will be required.

2 Chapter 9, Using Existing Global Search Software provides details on some existing global
search solutions.

3 Agents are described in the Software Agents in Apertis document.

Some back-end plug-ins may be capable of prioritizing their results. These
priorities should be normalized for fair comparison across plug-ins, and then used
by the front end to sort results within priority levels.

5.3 EASY FOR APPLICATION DEVELOPERS

Many applications will work with data that should be exposed via the search
interface, but if integrating an application with global search is difficult then
developers may do it poorly or not do it at all.

For applications using the Apertis persistence framework to store data, it may be
possible to have a single search plug-in that can mine the persistence framework
to produce results for multiple applications.

Since the applications are responsible for the structure of their data in the
persistence framework, it's difficult for a generic plug-in to guess what data
should be searchable. Applications may store sensitive information, such as
passwords, in the framework as well.

Another difficult problem is that the plug-in should be able to track which results
were selected in order to increase their priority in future searches, but this is
difficult to maintain separately from the searchable data.

The following criteria simplify the implementation of a generic plug-in for mining
the persistence framework:

• The persistence framework allows applications to create special tables
for searchable data.

• Only the contents of these tables are searchable.

• The format for searchable data is dictated by the persistence framework
and contains extra fields for use by the plug-in for gathering statistics.

• The application manifest indicates whether the plug-in can search an
application's data – even if the application uses the searchable data
format, it may still provide its own search plug-in, and not wish to have
its results duplicated by the generic plug-in.

In addition to allowing applications to intentionally expose data to the search
framework, if the SDK provides functionality for an application to maintain a list of
recently used items in a standard way, a generic plug-in could use that
information to provide search results.

Activation of these search results must invoke the application in a way that the
appropriate data is immediately displayed. The application manager and the
application will have to negotiate this launch.

Searching the persistence API's storage is covered further in section 6.3, The SDK
Persistence API.

5.4 HIGHLY RESPONSIVE

Users will expect new search results to be presented as they type, with the result
list becoming more refined the more text they enter. It is important that the text
entry always feel responsive, even if the results are slightly delayed.

Search results may take a noticeable amount of time to accumulate. Local results
should arrive quickly, but remote results could take seconds. Waiting for all
results to be available before presenting any to the user would result in a
disappointing experience.

In order to avoid penalizing fast responders to wait for the slowest plug-ins to
finish their queries, search results should be displayed to the user promptly as
they become available.

Asynchronous coupling between primary and auxiliary is also important. If a
search returns a contact, the user may intend to send an email or place a call to
that contact immediately – waiting for online status before showing that search
result at all might give the impression that the search system is slow.

An indication that search results are still being accumulated should be presented
to the user, as slow responding back-ends may take a significant amount of time
to finish, and a user may choose to wait for more search results if they know more
may become available.

It may be preferable to delay querying slow, online, or resource heavy search
result providers until the user signifies the end of text interaction in some way. A
quickly accumulated subset of potential search results could be displayed during
text entry with a full search only conducted if they hit “enter” instead of selecting
a result.

This would prevent sending off a large number of resource intensive requests for
every entered character during the time when they're likely to be immediately
invalidated by more input.

5.5 LIMITED SYSTEM IMPACT

If the search framework immediately responded to a search request by sending
requests to all available plug-ins concurrently, the resulting spike in I/O and
memory consumption would likely have detrimental effects on system
interactivity. If the search results in significant storage device access, useful data
will be pushed from system caches resulting in a generally sluggish system for a
while after a search takes place.

Efforts should be made to do the minimal amount of searching possible to satisfy
the user's request. Since applications are required to specify in their manifests
what categories and keywords apply to their data, a keyword based search only
needs to access a subset of search plug-ins.

Starting with a “shallow” search and allowing a progressively deeper search
(perhaps by touching a “more results” button, or by speaking the word “more”)
will allow the search manager to query high priority plug-ins first, and only query
lower priority plug-ins if the user is dissatisfied with the search results.

The initial search will prefer plug-ins for applications on the home screen and
applications that are already running, as well as higher priority search content,
with subsequently “deeper” searches progressing to lower priority levels.

As the user performs searches and the system accumulates more information on
what plug-ins are most likely to provide the results they choose, the “more
results” function will be used less and less frequently.

5.6 PREDICTABLE INTERACTION

Rapid changes in already visible search results could result in the user selecting
an unintended item. Care should be taken to minimize movement of search
results after display.

Results should be displayed in sorted order, not displayed and then sorted. As
new items are added they may change the position of existing items – new high
priority results will push lower priority results down the list.

Aggressive timeouts may need to be set for online sources to help mitigate this.
Search results from online sources could be given a shared timeout, at which
point the results will be ordered and injected into the displayed list all at once.

If the result list can be navigated with up/down buttons or a similar physical
interface then the selection should stay with the currently selected item if new
results appear. If the selection stays with the ordinal position in the list, then an
unintentional activation is much more likely to occur.

5.7 BALANCE OF CONFIGURATION AND HEURISTICS

Exposing preferences to control all aspects of the search process will almost
certainly confuse more users than it will help. Trying to represent all the possible
combinations of flags to the user in a sensible way will likely not be possible. The
ability to turn individual search sources on and off is probably useful, and this is
the way search configuration is presented on some operating systems (OSX,
Android).

If the interface is too configurable it makes testing new search heuristics more
difficult, as they need to be tested for interactions with all possible combinations
of the available settings. Giving the user control over what is searched, but not
how it's presented, should allow some user customization while maintaining
consistency for developers.

The system should track a user's search history and use that information to
change the priority levels of content categories, and the effect of content flags.
This will allow the system to adapt to a user's preferences over time. Since
applications can add new content categories, flags, and keywords this will also
allow these new types to eventually find the priority level that matches the users
interest In them.

Some system settings should affect the search system. If Apertis is equipped with
a wireless modem, the search system should obey the system settings for

wireless data usage. It might be useful to allow finer grained control over remote
searching. Back-ends that require network traffic to perform a search could be
presented as a single result (like: “Search Wikipedia for: ...”). Activating that
result would perform the remote search and replace the single line with the new
results as they become available.

6 POTENTIAL SEARCH BACK-ENDS
A significant body of search software already exists and would be appropriate to
integrate into a global search framework; some convenient libraries and protocols
exist for quickly creating new search back-ends.

The following sections provide an overview of some potential primary and
auxiliary sources. For some of them indexing services are already available,
others don't yet have a free implementation or are Apertis specific4.

6.1 PRIMARY SOURCES

The following software solutions bear strong consideration for inclusion as primary
search backends:

• Zeitgeisti - An activity logger that tracks frequently used content as well
as chat logs. While it's possible for individual apps to track recently used
data, Zeitgeist can track this data on a whole system level.

• Evolution-data-serverii - A component allowing access to calendar, tasks,
and address book information.

• Folksiii - A “meta-contact” aggregator that can return information for
contacts across a wide array of services (including Evolution-data-
server's contact information).

• Griloiv - A framework for browsing remote media.

New search backends could readily be built from:

• OpenSearchv - A standard for internet based searching implemented by
many existing searchable pages – Wikipedia, Google, Bing, and IMDb to
name a few.

• Lucene++vi - A generic text search engine that can be used in
applications that want to implement their own search back-ends.

Some Apertis specific systems are good candidates for delivering search results:

• Application Manager – The application manager could provide search for
installed applications, and perhaps even allow searching running
applications to allow a quick jump to recently used applications on the
application stack.

• Preference Manager – The preference manager has access to all
application and global UI settings, and could provide these settings to the
search framework.

• Browser – The browser application's bookmark list should exposed by the
search infrastructure.

There may be times when more than one primary search source returns the same
result - the Zeitgeist activity logger, for instance, tracks recently used content.

4 Chapter 10, New Software Development later in this document is intended to give an overview
of what suggested components would require new software development.

Recently played media may be returned as a search result from both Zeitgeist and
a media indexing service. When such a collision occurs, the two results should be
combined (before consulting auxiliary sources) and displayed as a single search
result.

Some care will need to be taken in selecting how the plug-ins query results. For
example, the application and preference managers could be queried over D-bus
since they're likely to be long running services. The search plug-in for browser
bookmarks should directly query the bookmark database, as it would be
undesirable to launch an instance of the browser to service a search request.

6.2 AUXILIARY SOURCES

Once a result is provided, useful additional information can be added by auxiliary
sources:

• Tumbler can provide thumbnails for documents and media

• Plugins can offer related searches, eg. songs by the same artist or in the
same album, similar songs, places near a location,

• On-line services could be used to retrieve album art, lyrics, or movie plot
synopses.

6.3 THE SDK PERSISTENCE API

The SDK will provide a persistence API to applications – as this API can be used to
store recently used or favorite items. The SDK Persistence will also provide a
plugin for the global search infrastructure, to provide useful information as both a
primary and an auxiliary source.

Several types of data could potentially be managed by the SDK persistence API:

• Favorite lists - items the user has declared to be important.

• Recently used lists – items the user has interacted with recently. This is a
convenience API to information stored in Zeitgeist

• Application-specific data – anything an application wants exposed to the
search framework.

Data should be stored in such a way that the search result can be easily passed to
the appropriate application for launching. One possible set of data for an item
stored by the persistence API would be:

• The information classification (as in Chapter 2, Information Classification)
for the stored item.

• The name of the item – the name of the web page a bookmark refers to,
name of a radio station, etc. This is what will be shown as the search
result.

• A reference to the activatable item - a local file name, a URL, or other
relevant data that would be passed to the application to activate it.

• The time of the last usage of this piece of data (see following comments).

• Potentially some simple keywords so proprietary data can be better
integrated with search.

• Any additional information the application wishes to attach to this item -
unused by the search system.

• Any additional information used by the search subsystem, not modifiable
by the application itself. For example, the original plugin that provided
the item.

In practice there are several ways to decide if an item is recently used. An
application could track the last 5 documents it has been required to open, or a
web browser could track all sites it has visited in the last 2 weeks.

Examples of favorites and recent used items for common applications
Application Favorite Recent used items

Web browser Bookmarks History

Navigation Favorite places Last destinations

Radio Station list Last station

Weather Favorite locations Last location

Contacts Favorite contacts Last contacts called or
messaged (sent or received)

Documents Files in ~/Documents Last opened documents

Media player Playlists Last played

Calendar Next events Last opened event

It is recommended that regardless of the methods of determining recency, a date
of last usage is stored in the persistence framework for searchable items. This
will allow the search system to fairly prioritize results from different applications.

Application-specific data presents a rather big challenge to the search framework,
both in terms of implementation and UI design. While some application concepts
can be represented in intuitive ways by a generic search interface, that will be the
exception rather than the rule. Therefore, Collabora recommends that search be
limited to item names and keywords that the application may associate with the
name. More complex searches, such as searching for music that is above a given
media rating, should be available in the application itself, otherwise the general
search will be too complex to use and implement.

7 EXAMPLE SEARCH FLOW

A search begins in the HMI, either by voice recognition or by interaction with the
touch screen. Before any lengthy search is performed, hard coded response logic

Illustration 1: Search Flow

is checked for simple responses such as changing the radio station or checking
the weather at the current location.

If this logic completes the search, the appropriate action is taken and the
interface is dismissed. If there is no user selection within a configurable time, the
search engine begins performing queries of the back end plug-ins, starting with
the highest priority information categories (static data content), including
auxiliary information.

As search results are accumulated and displayed, the user is able to either select
from the presented results, or request that the search engine try lower priority
(and potentially slower) content types to satisfy the request (dynamic data).

It's not unlikely that a single plug-in can return results of different content types –
the application manager's plug-in, for example, may return applications as well as
application preferences. The search system must be able to tell the plug-ins that
it is currently only interested in a subset of available content types to control the
returned results.

The plugins may also suggest related search items, eg. Similar songs, songs by
the same artist, places near a location. The UI will display these related items as a
subitem. If selected, the search engine will initiate a new search with the selected
condition, and the search will start over.

Once the user selects an appropriate result, the appropriate action should be
taken (Some examples are: launching an application or changing the radio
station). The search framework should use the finally selected search result to
assist in re-prioritizing plug-ins and categories for future searches.

8 IMPLEMENTATION EXAMPLES
It is not the intent of this document to dictate application design decisions, such
as file formats or storage methods for application data (like bookmarks, calendar
entries, and contact information.)

However, this section provides some potential ways to provide search results for
each of the content types from section 2.2, Content Categories and some
recommendations that may make developing the search system easier.

Collabora recommends against trying to use Tracker as an indexer for any
proprietary data formats, instead preferring a plug-in for the search framework
instead.

If an application changes the format of the data it wants to store, the Tracker
database would need to be updated for application management operations.
Tracker's database is not governed by the application rollback system, so these
updates would not be reversible.

Similarly, it would be preferable to avoid using Tracker to mine any new file types,
or have it index application storage areas other than the general storage area.
Proprietary file types can instead be handled by agents or plug-ins provided by
the applications that operate on them.

Since Apertis will not have a file browser, some standard file types (vcards,
icalendar, GPX) should likely not be stored at all, and instead be consumed and
deleted by the appropriate application when presented to the device.

Allowing these formats to be stored, indexed and displayed as search results
would create confusion when the application responsible for that data type also
returned a similar search result. This problem is explained further in the following
sections.

8.1 APPLICATIONS

For the purposes of global search, applications can very broadly be separated into
two groups:

• Installed – results can be returned by a plug-in that uses the application
launcher's database of application manifest to return pertinent results.

• Available from the store – a plug-in that connects to the application store
could locate installable applications that match the user's search.

8.2 PREFERENCES

The Apertis Application Development document defines a system in which
application settings for all applications are managed by a single app-settings
application.

Under such a system, a single plug-in could be written to provide any settings
managed by the preference manager as search results to the global search front
end.

8.3 DOCUMENTS

Document search results can be provided by several sources:

• Local documents in standard formats will be returned by the system
indexer.

• Favorite and recently used files and web pages can be returned by the
SDK persistence API search plug-in.

• A plug-in could perform a Google search.

• Data in proprietary formats could be searched by application specific
plug-ins.

8.4 MEDIA

The Media Management Design deals specifically with the handling of media
content via a combination of Tracker, Tumbler and Grilo.

Radio station results could be provided by the SDK persistence API. Tracker also
has an ontology for radio stations, so storing station data there is an option.

8.5 CONTACTS

The Contacts design defines an approach to contact management based on a
libfolks front end. A plug-in using libfolks could be created for the global search
system to provide contacts as search results.

A file format – vcard (.vcf, .vcard) exists for the exchange of contact information.
If it's deemed necessary to index these for some reason, it should be noted that:

• “Activating” a vcard file generally results in adding a contact to a contact
database – which is quite likely not what the user is trying to do via the
search interface.

• A vcard file may contain a subset of the information available to libfolks,
and will not remain in sync with it if contact information is updated.

• Activating the vcard may in fact replace more recently updated
information in the contact system with older data.

As such, a vcard file search result may be hard to distinguish from a contact
search result, and vcard files should probably not be returned as results at all.

8.6 EVENTS

Like contacts, calendar events have a standardized file format for passing along
event data – iCalendar (.icf). Also like contacts, this format is probably only used
for synchronizing events between devices and is probably not the calendar
application's native storage format.

Like .vcf files, .icf files should probably not be part of the returned search results

to avoid confusing behavior. Instead, a plug-in that uses the calendar applications
native storage format could provide these results.

Depending on application design decisions, a single calendar application might
not be the only source of searchable “events” - a social media application might
also provide search results.

8.7 COMMUNICATIONS

The applications responsible for handling phone, SMS, e-mail and instant
messaging data can all be responsible for searching their own logs for providing
search results.

A plug-in based on libfolks could provide auxiliary information about the contacts
involved in the communications returned by the primary results providers.

8.8 DEFINITIONS

A Plug-in could search Wiktionary via the OpenSearch API, or a standalone
dictionary application could provide a plug-in to provide results from its local
database.

8.9 LOCATIONS

Navigation and weather software can provide favorite or recent locations via the
persistence API's plug-in.

A plug-in for the navigation software could allow searching the map data to return
possible destinations, and a weather plug-in could be queried for current
conditions at those locations.

A weather plug-in should probably employ efficient caching, since searching for
nearby points of interest will almost always return a large number of locations in
the same weather reporting domain.

9 USING EXISTING GLOBAL SEARCH SOFTWARE
Many search frameworks already exist, and it may be possible to re-use some of
their code. Unity lenses5 have been singled out as a particularly interesting
search architecture.

The Unity search system consists of 3 pieces:

• The Dash – the user interface components. These are an integral part of
the Unity UI, which itself is a plug-in for the compiz window manager.

• A collection of Lenses – search front ends which pass up result lists to the
user interface components. Each data type is intended to have its own
lens.

• A collection of Scopes – back end plug-ins that return results to front end
lenses. A lens can pull data from any number of scopes.

Lenses and Scopes are processes launched via D-bus to service search requests –
though a lens may have a “local scope” built into it and not require any additional
scopes. Both components are written in the Vala programming language using
libunity, and must have D-bus .service files so they can be demand launched by
D-bus activation.

In order to leverage the Unity Lens search infrastructure in Apertis, the front end
components would have to be re-implemented – or the code from the Unity
compiz plug-in could be extracted and heavily re-factored to fit within the Apertis
UI.

The existing code is heavily integrated with Unity, and may be very difficult to
extract without having to also duplicate a lot of other Unity functionality. It may
be easier to mimic the dash's D-bus interfaces instead of trying to fit its code into
Apertis.

Since the lens architecture requires the user to select what kind of data they're
searching for, in addition to UI for displaying search results, a method of selecting
which lens to search with would also be required. In the Unity Dash this is known
as the “lens bar”.

A set of Lenses are required, one for each type of searchable data – the list of
content categories from 2.2, Content Categories would provide a good selection of
lenses. Some of the lenses already available for Unity might fill these roles.

Scopes would need to be created for the different data sources – such as a
generic plug-in for mining the persistence framework. Since the persistence
framework might contain data that fits different categories, multiple scopes may
need to be written for it, each presenting only one category of information.

Multiple scopes can provide results to a single lens, so, for example, a
“communications” lens could have a back-end scope for e-mail, and another for
SMS messages.

The lens concept differs slightly from the search paradigm presented earlier in
this design. Using lenses, the user would have to pick what type of data they

5 http://developer.ubuntu.com/resources/technologies/lenses-and-scopes/

http://developer.ubuntu.com/resources/technologies/lenses-and-scopes/

were searching for by selecting a lens, as opposed to all types of data being
prioritized and combined in a single list.

10 NEW SOFTWARE DEVELOPMENT
To implement a global search interface like the one described in this document,
new software components will need to be created:

• A plug-in framework for integrating search back-ends, perhaps built on or
with code re-used from software from Chapter 9, Using Existing Global
Search Software. A similar plugin framework is also offered by Grilo.
Although Grilo is focused on multimedia content, the plugin framework
could be reused and adapted to serve general content, as needed by the
SDK Persistence API. Also, Grilo is already used within Apertis, avoiding
new dependencies.

• Plug-ins for the framework – many of these will be thin wrappers around
existing search functionality such as that listed in Chapter 6, Potential
Search Back-ends, some will be Apertis specific and require more
development.

• A UI for presenting and interacting with search results.

• Preference management for the search system.

• APPENDIX A: REFERENCES

i http://zeitgeist-project.com/ – Zeitgeist activity tracker
ii http://www.go-evolution.org/EDS_Architecture – evolution-data-server calendar, address

book, and e-mail interface
iii https://live.gnome.org/Folks – Folks contact aggregator
iv https://live.gnome.org/Grilo – Grilo remote media discovery library
v http://www.opensearch.org/ – OpenSearch remote search standard
vi https://github.com/luceneplusplus/LucenePlusPlus – Lucene++ fast text search engine

http://zeitgeist-project.com/
https://github.com/luceneplusplus/LucenePlusPlus
http://www.opensearch.org/
https://live.gnome.org/Grilo
https://live.gnome.org/Folks
http://www.go-evolution.org/EDS_Architecture

	Appendix A: References
	Document Change Log
	1 Introduction
	2 Information Classification
	2.1 Information Sources
	2.2 Content Categories
	2.3 Content Flags
	2.4 Auxiliary Information

	3 Search Priority
	4 Speech Recognition
	5 Guidelines
	5.1 Decentralized Indexing
	5.2 Extendable Via Plug-ins
	5.3 Easy for Application Developers
	5.4 Highly Responsive
	5.5 Limited System Impact
	5.6 Predictable Interaction
	5.7 Balance of Configuration and Heuristics

	6 Potential Search Back-ends
	6.1 Primary Sources
	6.2 Auxiliary Sources
	6.3 The SDK Persistence API

	7 Example Search Flow
	8 Implementation Examples
	8.1 Applications
	8.2 Preferences
	8.3 Documents
	8.4 Media
	8.5 Contacts
	8.6 Events
	8.7 Communications
	8.8 Definitions
	8.9 Locations

	9 Using Existing Global Search Software
	10 New Software Development

