
Apertis

Media
Management

Design
Author: Mateu Batle, Sjoerd Simons
Contributors: Martin Barrett, Travis Reitter, Gustavo Noronha,

Xavier Claessens, Alvaro Soliverez, Philip
Withnall

Version: 0.5.3.1
Status: Final
Date: 17 November 2015
Last Reviewer: Ekaterina Gerasimova

This design was produced exclusively using free and open source software.

Please consider the environment before printing this document.

DOCUMENT CHANGE LOG
Version Date Changes

0.5.3.1 2015-11-17 • Delete obsolete document properties
• Fix links to wiki.gnome.org
• Improve wording

0.5.3 2015-08-19 • Renamed to Apertis
• Updated thumbnail storage locations

0.5.2 2014-12-11 • Updated to new template

0.5.1 2014-09-05 • Updated privacy analysis in section 2.4.1
• Updated solution for removable storage full space in section

2.4.3

0.5.0 2014-08-13 • Updated removable storage indexing in section 2.4.3

0.4.0 2013-12-09 • Updated proposed solution in sections 2.4.3 2.5.1, 2.5.2,
2.5.3, 2.5.5

0.3.11 2012-05-11 • Updated title and file name to follow Document Naming
Scheme

0.3.10 2012-04-25 • Removed global search from this document, an specific
design will be created for that.

0.3.9 2012-04-09 • Moved some sections too detailed to Q&A, like udev/UDisks,
timeline of events and timings on USB flash insertion,
GFileMonitor & inotify.

• Added media indexing architecture diagram
• Added Tracker scheduling diagram
• Added table for supported formats for thumbnailing
• Added Zeitgeist notes to global search
• Addressed feedback provided by internal review

0.3.8 2012-03-27 • Added Q&A section to answer questions from last workshops
• Modified thumbnail extraction in section 2.5.5 (R12)
• Modified concurrency settings in section 2.5.6 (R13)
• Modified two step thumbnailing process in section 2.6.1

(R14)
• Fixed description of configuration parameters for Tracker

Miner in section 3.1.2
• Added important note regarding upstream development in

section 2.1
• Clarified purpose of max bytes for Tracker Extract in section

3.1.3
• Modified Grilo architecture diagram in section 3.3
• Added notes on album art is obtained in section 3.2.1

0.3.7 2012-03-19 • Added section on global search in section 2.11 + notes on

chapter 1
• Added notes on Grilo API stability in section 2.2 (R1)
• Added stacking of SDK API on top of Grilo in section 2.2

(R1)
• Added introduction on udev and UDisks in section 2.3 (R2)
• Added table with timeline of events and timings happening

on USB flash device insertion in section 2.3 (R2)
• Clarified solution for filesystem browsing in section 2.3 (R2)
• Added notes on GFileMonitor and inotify in section 2.4 (R3)
• Changed definition from Shared Database to Media Indexing

of public and private files and added notes on public / private
storage in section 2.4.1 (R5)

• Make more clear tools to migrate data is one of the options
in section 2.4.2 (R6)

• More detailed analysis in section 2.4.3, extended solution
design with more solutions (R7)

• Switched to a more automatic way to prioritize per content
type in section 2.5.2 (R9)

0.3.6 2012-02-26 • Added more details on thumbnailing requirements
• General grammar and spelling review
• Added more details on indexing scheduling
• Add executive overview of technology
• Moved detailed technology description to an appendix
• Separated sections requirements and work to do
• Extended section on Tracker Store
• Extended section on Tumbler
• Extended on requirements
• Changed bibliography entries by footnotes

0.2.0 2012-02-06 • Initial release

0.1.0 2012-01-31 • Initial version

Table of Contents
Document Change Log...2
1 Introduction...6
2 Solution...7

2.1 Technology and Solution Overview...7
2.2 Local Storage Media Source...9
2.3 Media Browsing Requirements...10

2.3.1 File-system based browsing...10
2.3.2 Notification on metadata changes...11
2.3.3 Paged queries..12

2.4 Media Indexing Database Requirements..12
2.4.1 Media indexing of shared and private files..12
2.4.2 Database version management..13
2.4.3 Indexing database on removable device...15

2.5 Indexing Scheduling...16
2.5.1 Media Content Counters..17
2.5.2 Prioritized extraction per content type..18
2.5.3 Selective prioritized extraction..19
2.5.4 Selective prioritized thumbnailing...19
2.5.5 Multi pass metadata extraction...20
2.5.6 Concurrency configurable..20

2.6 Thumbnailing...21
2.6.1 Two-step thumbnailing..21
2.6.2 Thumbnail resolution configuration...21
2.6.3 Thumbnailing algorithm configuration..21

2.7 DLNA (UPnP)...22
2.8 Online Media Sources...23
2.9 Bluetooth AVRCP..23
2.10 Playability check..23

3 Appendix: Media Management Technologies..25
3.1 Tracker..25

3.1.1 Tracker Storage...26
3.1.2 Tracker Miner...28
3.1.3 Tracker Extract...31
3.1.4 Tracker Scheduling..33

3.2 Thumbnail Management..34
3.2.1 Media Art Storage..37

3.3 Grilo..37
3.3.1 Grilo Media Source Plugins..39
3.3.2 Grilo Metadata plugins..40

3.4 Google Data Protocol..40
3.5 Librest and libsoup...41
3.6 Playlists support...42

4 Appendix: Questions & Answers...43
Q: Will asking for a specific prioritization during metadata extraction

increase the load by running multiple indexing jobs ?................................43
Q: How does the system know when to renew thumbnails ?......................43
Q: How the mime type of the files is determined ?.....................................43
Q: How the video thumbnailing works to avoid black video frames or
uninteresting frames in general ?...43
Q: How document thumbnailing works to avoid thumbnails of blank pages ?
..44
Q: How the applications can store and retrieve the last time a media file
was played ?...44
Q: How a thumbnail is retrieved ?...44
Q: How the system behaves on robustness on power loss ?......................44
Q: How a media file from a USB Flash device is identified ?.......................44
Q: Is it configurable the timeout for Tracker extract operations ?...............45
Q: Does Tracker retry in case Tracker Extract fails due to the watchdog
timer ?..45
Q: Does Tracker store marks for the corrupted files ?.................................45
Q: Bosch reported performance of page queries on Tracker databases is
negatively affected by the number of rows in the database. Collabora to
double check...45
Q: Should Tracker be used for Radio Stations information ?.......................45
Q: What happens when a USB flash device is inserted in a USB port ?......46
Q: How does the monitoring of filesystem changes work in Tracker ?........47

Index of Tables
Table 1: Tracker use cases for storage utilization...28
Table 2: Formats supported by Tracker..32
Table 3: Thumbnail storage utilization...35
Table 4: Formats supported by Tumbler thumbnailer plugins................................37
Table 5: Timeline of events on USB flash device insertion.....................................47

Index of Illustrations
Illustration 1: Media Indexing Architecture..9
Illustration 2: Notification on changes...11
Illustration 3: Media Indexing Schedulling...17
Illustration 4: Tracker Storage..26
Illustration 5: Tracker Miner Architecture...31
Illustration 6: Grilo Architecture...39

1 INTRODUCTION
This document covers the management of media content in the Apertis platform.
There are several types of media content to handle in the platform: images, audio,
video and documents. We can identify the following operations with media:

• Media Indexing: extracting metadata from media content and store it in
a format that allows fast retrieval.

• Media Browsing: locate the media content and access its metadata.

Chapter 2 Solution provides a general overview of the technologies used, like an
executive summary of chapter 3, as well as a high level view of the solution
proposed. Additionally, it exposes in detail the media management requirements
in the Apertis platform, providing an analysis as well as a solution to each
requirement, which might involve modifying existing technologies or even create
new ones.

Although this document is mostly focused on the media content, the technologies
introduced are related with other features in the platform like global search, which
allows to search not only in media content but also in applications, messages,
calendar events, etc. For details on global search please check its specific design.

Chapter 3 Appendix: Media Management Technologies is mostly used as reference
material from other sections of the document, so it is not necessary to read from
start-to-finish. It has a detailed description of the current state of the technologies
used for media management without including specific requirements, additions
and modifications described on chapter 2.

This document assumes the adoption of a media-centric approach for applications
(every media source provider will have its own application for browsing and
playback). This provides a customized fully-featured experience for each of the
media provider services. See below the list of media content providers that have
been identified as requirements, these services will be analyzed in more detail in
chapter 2 Solution.

• Local Storage.

• Removable Storage Devices.

• CD and DVD.

• DLNA (UPnP).

• Media Online Services: YouTube, Shoutcast, Dropbox, last.fm, podcasts,
etc.

• Bluetooth AVRCP.

2 SOLUTION
The following sections will provide a high level view of the technologies and
solutions followed by a detailed analysis of the requirements for media content
sources supported.

2.1 TECHNOLOGY AND SOLUTION OVERVIEW

This document looks at what changes could be made to the open source
components to better support the Apertis use cases, it is important to note that
those changes may not be possible for the scope of this project and may not be
accepted upstream.

See below an enumeration and a brief overview of the main technologies used in
the design:

• Tracker is a central repository for user information. It is made of several
components: Tracker Miner, Tracker Extract and Tracker Store. Tracker
Miner automatically crawls for media content files. Tracker Extract
gathers useful metadata from these files and it stores this metadata in
the Tracker Store database. Metadata can be retrieved from the Tracker
Store with SPARQL queries. See chapter 3.1 Tracker for more details.
Although this document will only focus on the Tracker features specific to
media indexing, Tracker can be used to store other information as well,
like applications, messages, calendar events, etc. or in general any
information that is worth to share between applications.

• Grilo is a simple API for browsing media content and provide media
content metadata. Grilo layer helps to hide the complexities of Tracker
and its query language, by focusing on media content (since Tracker is
much more generic). See chapter 3.3 Grilo for more details.

• Tumbler. It is a service for accessing and caching thumbnails. See
chapter 3.2 Thumbnail Management for more details.

• libsoup and librest are libraries simplifying the creation of HTTP
client/servers and the access to REST-based services respectively. See
chapter 3.5 Librest and libsoup.

• libgdata is a library implementing the Google Data Protocol. It provides
access to Google Services like YouTube and Picasa, among others.

The proposed solution combines Grilo, Tumbler and Tracker for locating media
content and retrieving its metadata from the local system and removable storage.
Tracker does the heavy work: filesystem crawling, metadata extraction and
metadata storage. Grilo is a simple API which lies on top of Tracker, used by
applications to discover media content and its metadata. Tumbler is responsible of
thumbnail generation.

Tracker's scheduling algorithms needs to be modified to support the requirements.
The goal is to prioritize the different tasks of information retrieval, so what
applications need first must be retrieved first. There are different cases depending

on the specific requirements:

• Prioritization done automatically by Tracker in a hard-coded way (not
configurable), like gathering all metadata from filesystem (filename, size,
modification time, etc.) before extracting metadata from the file contents.

• Prioritization done automatically but configurable, like prioritizing the
indexing of music files over video files.

• Prioritization influenced or requested by upper layers. In some cases,
upper layers need to provide some clues about what needs to be done
first or what is more important, like a picture viewer application boosting
priority to metadata extraction of image files (instead of the default which
could be music files).

The details on Grilo API stability can be checked in the API stability design. In
summary, it is still a young API and its API will be broken on version 0.2. Under
this situation, it might be convenient to layer an Apertis SDK API on top of the
Grilo API to improve API stability for the application layer.

See Illustration 1: Media Indexing Architecture for an overview of the general
architecture. Some of the components listed will be introduced with more detail in
the following chapters.

2.2 LOCAL STORAGE MEDIA SOURCE

Requirement R1. Support local storage as a media source.

Analysis. The system has storage memory to store media locally. Locating media
content in the system local storage and retrieving its metadata is required.

Solution. Collabora proposes a combination of Tracker and Grilo, as a powerful
solution for this endeavor (see section 2.1). Tracker can be reviewed in detail in
chapter 3.1, and Grilo in chapter 3.3. Upper layers will just interact with the Grilo
layer, which is a simple API specialized in media browsing hiding the complexity of
Tracker.

Grilo allows to browse, search and locate the media content in the system. The
application can access the media content through the filesystem API via the URI
(Uniform Resource Identifier), e.g. file://home/username/Music/song1.ogg.

Illustration 1: Media Indexing
Architecture

See requirement R5 for comments on public and private content.

Status. Satisfied.

2.3 MEDIA BROWSING REQUIREMENTS

2.3.1 FILE-SYSTEM BASED BROWSING

Requirement R2. Support filesystem based browsing for early access.

Analysis. This is required in order to quickly render a user interface to the user,
for example when plugging in a USB flash device. Removable devices are
potentially slow and it takes time to actually index and capture all metadata, so
information like author and album could not be available on time. Therefore, a
filesystem view should be available through the media browsing framework itself
at least, in order to provide quick access to the media content by browsing the
filesystem structure; as opposed to other ways to browse content using the
metadata (by author, album, etc.).

Solution.

There is a Grilo Filesystem plugin. This is the fastest way to access the filesystem
entries in the device. Content would be available soon after the filesystem is
mounted on the system. Additionally, this plugin already monitors and reports for
changes on the directories or files. One disadvantage of the Grilo Filesystem
plugin is that it could be hard to access the metadata or get notified about
changes in an efficient way.

Another solution would be to use Grilo Tracker plugin. Grilo plugins provide access
to the media content in a hierarchical way. Grilo Tracker plugin has two modes of
hierarchical navigation, one based on categories and another one based on the
filesystem. The latter one provides the info in the same structure as it is stored in
the filesystem. It allows to browse from a root folder or from specific folders.
However, the information has to be previously available in Tracker Store for this to
work. To minimize this delay, Tracker scheduler will be changed to get filesystem
information before other media metadata. Obtaining the filesystem information is
very fast compared to the extraction of the metadata (which involves reading the
file contents). Some timings have been gathered to show this fact, check Table 5:
Timeline of events on USB flash device insertion in the Q&A section for the details.
This solution plays nicely with requirement R3 (to get notifications of ready
metadata as soon as it is available) and with R8 and R13 (regarding the
scheduling of operations like crawling, metadata extraction, etc.).

The last solution provided looks more promising than the first one, since it
integrates better with the overall architecture and it does not have a negative
impact in other requirements.

Required work.

Grilo Tracker plugin will need to be modified to operate as specified in the
solution, and it actually depends on requirement R8 and R13 related to Tracker
scheduling. Additionally, an API would need to be provided to change easily from

one hierarchical model to the other on run-time. See chapter 3.3.1 Grilo Media
Source Plugins for more information about Grilo.

Status. Satisfied.

2.3.2 NOTIFICATION ON METADATA CHANGES

Requirement R3. Metadata info can change during run-time, so the media
browsing API has to notify whoever is interested through some mechanism when
these changes happen.

Analysis. The indexing process is asynchronous, it can happen that media
content gets its metadata updated while the content is already being shown to
the user.

Tracker internally uses the file system monitor service provided by the Linux kernel,
which is a very efficient way to get notified about changes on the filesystem and it
is not doing active polling.

Once Tracker Miner gets notified about a change in the filesystem, it will check
what needs to be done depending on the specific type of change. For example, if
a new file is added it will determine if the new file is interesting for Tracker or not,
much in the same way it does when crawling through the filesystem looking for
files to index. In the case of a notification of a deleted file, it would remove its
associated information in Tracker Store. In the case of modified files, it would
extract the information again.

Solution: Grilo tracks changes in Tracker Store by subscribing to the
GraphUpdated D-Bus signal from the Tracker Store service (see chapter 3.1.1
Tracker Storage for more details). Grilo processes this information and provides
notifications of changes on media content. See Illustration 2: Notification on
changes for an overview of the interaction between the components involved.

Status. Satisfied.

Illustration 2: Notification on changes

2.3.3 PAGED QUERIES

Requirement R4. Provide queries to request content information by pages of
fixed size.

Analysis. There are potentially lots of results in a query for browsing media
content. Therefore, a mechanism to get the results incrementally as needed is
required.

Solution: Grilo supports paging in all requests via skip and count numbers.
Internally Grilo uses both mechanisms provided by Tracker SPARQL (OFFSET /
LIMIT modifiers in the SELECT SPARQL statements and TrackerSparqlCursor). See
chapter 3.3 Grilo for details on Grilo.

Status. Satisfied.

2.4 MEDIA INDEXING DATABASE REQUIREMENTS

2.4.1 MEDIA INDEXING OF SHARED AND PRIVATE FILES

Requirement R5: The system must be capable of indexing shared and private
files. Shared files can be accessed by all users in the system. Private files are only
accessible for the user who created them initially.

Analysis. The reason of this requirement is to guarantee a minimum level of data
confidentiality among the users in the system (for example regarding personal
photos and documents). This would be even more important if we consider
Tracker could be used to store other information as well.

We assume there are folders which are public (shared and accessible to all users
in the system) and folders which are private (only accessible to the owner of the
folder). Due to the existence of private content, each user must have its own
Tracker database for storing metadata.

In the future, the device may have different configurations for privacy. First case
would be that all user files are public, and they should be available for indexing by
all other users. Second case, where each user's files are private. A third case
would be that the user would be prompted which files to make public. Those
public files should be available for indexing by all.

Solution. Due to Tracker’s architecture, it is not neither easy nor efficient to add
the capability to have more than one database managed by a Tracker instance.
Due to the nature of SPARQL queries, it would require very complex database
joins and performance would suffer. SQLite is known to be very slow in such setup.
Additionally, Tracker developers are not keen on accepting this change, since
Tracker had a similar behavior in the past, and it was abandoned due to multiple
problems. Therefore, this would probably produce a fork of the Tracker version in
the middleware and it would be a huge increase on maintenance cost. In
summary, Tracker managing multiple databases does not seem feasible for now.

The proposed solution is to have a just a Tracker instance for each user, which
holds both the metadata for private files belonging to the user and the metadata
for public files.

A drawback of this solution is the additional space needed, since the metadata for
the public files is stored in each Tracker instance. Due to the local system storage
in the automotive industry being very expensive, we could think there will not be
really many public files to index. Additionally, the database space used to index
those public files is really minimal (0.03% as shown in Table 1) and the number of
potential users in a system is very reduced. In the case of removable storage files,
that will be treated as public files. The solution for indexing and thumbnailing will
be covered in section 2.4.3.

Another drawback is the extra processing required to index the public contents for
each user. There are also some risks about overloading too much the system in
this case, but those could be managed in the Tracker scheduler.

In the case of the thumbnails, it is possible to share the thumbnails objects, since
they are stored in files. Also note a Tracker instance would need to run for every
user logged in into the system; only Tracker Store and Tracker Miner though, not
Tracker Extract which automatically shuts down when idle.

To handle future privacy configurations, file permissions should be set accordingly,
and Tracker configured to index files of all users. Thumbnails should be generated
and stored in a central location where they could be retrieved by all Grilo
instances. Also, AppArmor profiles should be probably tweaked to allow Tracker
instances to read other users' files.

Status. Satisfied.

2.4.2 DATABASE VERSION MANAGEMENT

Requirement R6. The system should be able to cope with database version
updates.

Analysis. Database version updates is very tricky regarding Tracker, since the
updates could happen in different levels:

• SQLite database level. Every effort is made to keep SQLite fully
backwards compatible from one release to the next. Rarely, however,
some enhancements or bug fixes may require a change to the underlying
file format. There are two types of updates, and you can differentiate by
comparing the version numbers of the old and new libraries.

• First digit update on the version number. A reload of the database will
be required. Therefore, the contents of the database has to be
dumped into a portable ASCII representation using the old version of
the library and then reload the data using the new version of the
library. So we would need either a backup done with the old version or
have the old version distributed to do a dump of the database. Last
first digit change was on June 2004.

• Second digit update on the version number. It is backwards
compatible, so newer versions will be able to read and write older
database files. But there is no guarantee of forward compatibility. Last
second digit change was on July 2010. Provided we want to upgrade to
the new version, the update of the database could be done with just

the new version.

• Tracker RDF mapping level and Ontology level. First is related with
the mapping from RDF database model to a relational database model
(SQLite in this case). Second is related with changes on the models
defining the domains, objects, its properties and links. Both of these
changes are tracked by the Tracker database version. If the version is
different, then Tracker must perform a full re-index, as there is no
backwards compatibility. However, by using the Tracker journal, it would
just be like a reload of information, since the journal is like a log of all
transactions done in the database. This does not guarantee all the
information will be retained, since due to changes in the ontology, some
data might be invalid on the new model. There is also another way to
cope with ontology changes, via ALTER TABLE directly in SQLite, but this
requires some custom coding to be done and it is very complex to handle
all the cases in ontology changes. The last time the Tracker database
version was changed was in version 0.9.38 (February 2011). See chapter
3.1.1 for details on Tracker Storage.

It is clear that changes in the Tracker database version is a larger risk than
changes in SQLite. Let us analyze various scenarios:

• If Tracker Store just holds indexing information, this could be regenerated
by re-indexing, so there would be no real data loss on an database
version update.

• If Tracker Store keeps information entered by the user, like user tags,
then it would be lost during a full re-index. To prevent this, an ad-hoc tool
could be implemented to convert this information to the new database
version.

• Often the manufacturers or distribution maintainers decide to not deploy
new changes on the ontologies to avoid these database update
problems. Anyhow, some changes could be supported via some custom
code, like adding / removing properties; but others affecting the domains
or class hierarchy are much harder to handle. Each case of ontology
change needs to be analyzed particularly.

Solution. It is a bit of a case by case trade-off between storage space for the
Tracker journal vs CPU time for re-indexing. Assuming we cannot use unlimited
storage space on the device, then using the Tracker journal is not an option. The
way to handle database version updates is to analyze them on a case by case
basis. There are several points to evaluate like what is the impact of the update in
the existing database, what type of data it is (generated data vs user data), and
what solutions are possible to keep the data (either implementing ad-hoc tools to
migrate data or make use of already available tools).

See more details on Tracker Journal in chapter 3.1.1 Tracker Storage.

Status. Satisfied.

2.4.3 INDEXING DATABASE ON REMOVABLE DEVICE

Requirement R7. Storage of the indexing information for removable storage in
the removable storage itself.

Analysis. The main motivation for this requirement is to avoid using the scarce
expensive storage in the system. Here are some general problems and risks with
this approach:

• Data corruption. The user can disconnect the removable device at any
time without properly syncing. For a holistic view on robustness see
Robustness document. See points below to consider:

◦ Risk of corruption for user files and filesystem metadata. The device
could have been ejected in the middle of a write operation. The device
would not be usable unless its filesystem is recovered, and the user
could lose some or all the files.

◦ Journalled filesystems work more reliably, guaranteeing at least the
filesystem will not be left in an inconsistent state. In any case, the user
is the one who chooses the filesystem for its own USB flash devices,
and not the system, so there is not much to do here since the FAT
filesystem is typically the de facto standard used in USB flash devices,
which is not a journalled filesystem. Another point is that USB flash
devices are typically optimized for FAT filesystems.

◦ Write cache disabling for the USB flash device decreases the data
corruption risk, but the risk does not disappear. The user could still
eject on the middle of a write operation. As a result of the disabled
cache write operations will be slower. Additionally, USB flash
manufacturers tend to lie regarding sync requests.

◦ Note: the size of thumbnails has not been considered in this section,
since the thumbnail storage is independent from the metadata
storage. However, as we can see in the modeling spreadsheet, the size
of the thumbnails is really significant, even more than the metadata
size, so most probably it would make sense to store thumbnails and
album art in the USB flash device. Therefore the risk of data corruption
cannot be avoided in the end, just minimized.

Solution. The alternative to use a dedicated metadata database in removable
storage devices was discarded due to data corruption and maintainability
problems. However, thumbnails and album art will be stored in the removable
storage. That is a large portion of the metadata, and will help save local storage
space.

A single Tracker instance per user in local storage holding the metadata for media
content in the USB flash devices.

The thumbnails and album art will be stored in the USB flash device. As we saw
before, any write to a USB flash device could end up into corruption if the user
does not behave correctly. A check should be added when generating thumbnails
to use local storage when the removable device is full.

Note: In the current implementation, If the device does not have enough free
space, thumbnails will be generated. Album art will be generated in the local
storage cache.

The disk space usage can be controlled by removing metadata of unmounted
external devices when the disk space is low and/or when the DB size exceeds a
given limit.

Currently Tracker removes metadata only after 3 days, and when the disk space is
low, the indexing engine simply stops. A trigger shall be added to remove
metadata if the disk space is low, starting with data from removable storage
devices.

Also, the default for the database size limit is unlimited. A limit will be set, to
prevent waste of local disk space, and the database will purge old data when the
limit is hit.

Status. Satisfied.

2.5 INDEXING SCHEDULING

There are many specific requirements related with metadata extraction
prioritization. They will be analyzed in detail in the following subsections.

The Tracker Scheduler will need modifications to be able to specify priorities as
well as separate the operations on different stages. Additionally some extra hooks
might be needed in order to provide hints from the browsing applications. There
are several ways to implement this prioritization. One way would be by an API that
allows the application to explicitly give priority to certain operations or use cases.
Another way would be a heuristic way based on recent queries done to the media
framework. This automatic approach although initially interesting looks a bit risky,
as there could be unpredictable interactions between applications. See chapter
3.1.4 Tracker Scheduling for more details on how Tracker Scheduling works in the
upstream version.

The illustration Illustration 3: Media Indexing Scheduling shows an overview of
how the scheduling and priorities of indexing operations works. There is a main
component, the Tracker Filesystem Miner, feeding the task queues. Generating
new tasks is based on previous queries, filesystem events (e.g. new file created)
and as a result of crawling the filesystem. Tasks are consumed from the queues by
different components in order, the lower the priority the first it gets executed. The
priority of a task is determined by the type of task, which defines the queue where
the task belongs. Additionally, tasks resulting from recent queries are normally
placed in the front of the queue since they will most likely be a result of user
interaction. Also note this design allows to do some configuration regarding the
type of tasks and their priority, as well as test for other ideas during the
development. Requirement R12 has more details about the abstraction of
different types of tasks in the queues.

2.5.1 MEDIA CONTENT COUNTERS

Requirement R8. Provide the number of items per content type as soon as
possible.

Analysis. To determine the number of items per content type, all files must be
crawled first, and its mime type must be determined. It is not needed to do a full
extract of metadata to determine the mime type, but in some cases it might be
needed to read the first few bytes of a file (see Q&A for more details about
determining the mime type).

Tracker crawls the filesystem for new files to be indexed, and adds these files to a
internal queue. Each time a file from the queue is processed, there are two steps.
The first step, which is done by the Tracker filesystem Miner, gathers metadata
from the filesystem attributes without actually inspecting the file contents. In a
second step, more information is extracted by Tracker Extract by inspecting the
file contents, which is a more expensive operation. These steps are done for every
file processed. However to meet the requirements above, we would perform the

Illustration 3: Media Indexing Scheduling

first pass for all the items found before starting the second pass for every item.

Solution. Collabora will add an option in Tracker's configuration to enable two
pass indexing. If enabled, tracker will first crawl the whole filesystem to store files'
attributes but won't try to get embedded information (e.g. MP3 metadata, etc). A
boolean property will be added in Tracker's database for files that need a 2nd
pass, so Tracker knows which files needs a 2nd pass when it is done crawling the
filesystem. That property needs to be written into the database (and not only in-
memory) so Tracker is able to correctly resume its indexing after a system reboot.
Additionally, directories containing partially indexed files will be flagged (in
memory), to avoid re-crawling the whole filesystem when doing the 2nd pass (a
list of all partially indexed files would be too big and consume too much memory).

This solution has been discussed with upstream developers and has great chances
to be accepted.

Status. Satisfied.

2.5.2 PRIORITIZED EXTRACTION PER CONTENT TYPE

Requirement R9. prioritize metadata extraction per content type: first music
play-list, music, video, pictures and documents. Default prioritization can be
adjusted on run-time depending on user activity, e.g. if user starts browsing
pictures.

Analysis. Current Tracker scheduling does the metadata extraction in no specific
order.

Solution. A D-Bus interface will be added on Tracker. That interface will be used
by applications to tell Tracker about their current priorities. For example, a music
application will ask Tracker to index “audio/*” mime-type first.

If an application requests priority for a certain mime-type, Tracker will skip any
other file while crawling the filesystem. Additionally, directories containing
skipped files will be flagged (in memory), to avoid re-crawling the whole
filesystem when Tracker is done indexing all files that have the priority (a list of all
skipped files would be too big and consume too much memory).

When Tracker is done crawling the whole filesystem, it will do the 2nd pass
indexing (see 2.5.1) on the files that have the priority (e.g. if the music application
is running, the 2nd pass is done only on audio files at this point). When done, it
will do the 2nd pass on all files, ignoring the filters.

If an external storage device is plugged while Tracker is doing the 2nd pass, it
stops and crawls the new media first (doing first pass on prioritized files). When
done, Tracker will resume doing the 2nd pass.

If priorities changes while Tracker is doing the 2nd pass, it stops and crawl
directories where files have been skipped earlier. When done, Tracker will resume
doing the 2nd pass.

In summary, Tracker will do the 1st pass indexing (file attributes only, no
embedded metadata) on prioritized files, then 2nd pass on prioritized files, then
1st pass on not prioritized files, and finally the 2nd pass on not prioritized files.

This solution has been discussed with upstream developers and has great chances
to be accepted.

Status. Satisfied.

2.5.3 SELECTIVE PRIORITIZED EXTRACTION

Requirement R10. Prioritize metadata extraction for certain files, e.g. music files
currently shown to the user.

Analysis. The goal is to influence the scheduling of extract operations in Tracker
based on the user behavior. for example, If a user is browsing a specific folder in
the filesystem, the metadata extraction of the files currently displayed to the user,
must have priority over others. Additionally, the system could anticipate the
needs of the user, by trying to extract metadata for next media content items in
the page. This can be done by influencing the priority of extract operations in
Tracker by checking the results of recent queries.

Solution. The D-Bus interface proposed in 2.5.2's solution will be extended to let
applications give the priority on some specific files, in addition to the general
mime-type priority.

The following would be implemented as part of the solution:

• Extract normal. The current behavior, that is without automatic
prioritization of extraction based on queries.

• Extract recent. This will automatically request the metadata extraction
for media content items returned in recent queries.

• Extract next. This will automatically request the metadata extraction for
media content items that would result in next page of recent queries. This
setting will imply "Extract recent" as a dependency.

• Extract thumbnail. This will automatically request the thumbnail
computation for media content items returned in recent queries (or next
page items if "Extract next" is also set).

The application or SDK layer would be the responsible for enabling the settings
more appropriate for every specific case. Alternatively, Grilo could have extract
recent, new and thumbnails enabled by default. This is a trivial change that could
be decided later on during the development phase.

Solution needs to be discussed in more detail with upstream Tracker maintainers.

Status. Satisfied.

2.5.4 SELECTIVE PRIORITIZED THUMBNAILING

Requirement R11. Prioritize thumbnails depending on user activity.

Solution. This is already covered by requirement R10.

Status. Satisfied.

2.5.5 MULTI PASS METADATA EXTRACTION

Requirement R12. Iterative process for metadata extraction in multiple passes:
blank entry just file names, textual information, graphical information like
thumbnails, information from internet, etc.

Solution. The proposed solution in 2.5.1 already describe 2 pass indexing. A third
pass can be added the same way to create thumbnails, get information from
internet, etc.

The solution needs to be discussed in more detail with upstream Tracker
maintainers.

Collabora proposes Tumbler to generate and manage the thumbnailings (but not
scheduling the thumbnailing). In current version, Tumbler provides a D-Bus service
with schedulers to manage the thumbnails. Tumbler does not do any crawling to
look for contents to be thumbnailed; Tracker will request thumbnailing operations
to Tumbler. Although Tumbler has several schedulers to keep track of the
thumbnailing requests with different priorities, it will be Tracker who takes care of
the scheduling.

Thumbnail calculation is particularly expensive in CPU and storage resources. See
table 3 Thumbnail storage utilization in chapter 3.2 Thumbnail Management for
more detailed information.

Status. Satisfied.

2.5.6 CONCURRENCY CONFIGURABLE

Requirement R13. The scope (e.g. quantity of extracted data) within one step,
grabbing the data concurrent for multiple files.

Solution. Tracker has a scheduler priority parameter which allows to issue new
operations when the CPU is idle. Additionally there is an internal setting to set the
task pool limit, which controls the number of concurrent tasks that can run at the
same time. Currently this value is hard-coded to one, but it could be exposed via
configuration or make it dependent on the number of cores in the system
depending on Apertis' needs. Additionally there is support to adjust the amount of
work to do concurrently, in order to avoid overloading the system. This is set by
the throttle parameter, which basically allows to specify how many extract
operations can be carried per second (see chapter 3.1.2 Tracker Miner for more
details on throttle and scheduler priority).

The operations handled by the scheduler have small granularity (a single file), so
it is expected the whole system can react in time to get in / out from the idle
state. The management of the idle status is done directly by the kernel, by setting
the appropriate input / output priorities and CPU priorities to idle. Additionally, a
specific cgroup could be set up to have more control over the resources used for
media indexing.

Solution needs to be discussed in more detail with upstream Tracker maintainers.

Status. Satisfied.

2.6 THUMBNAILING

2.6.1 TWO-STEP THUMBNAILING

Requirement R14. Provide an additional iteration to generate metadata which is
not already embedded within the content, such as thumbnails for pictures. First,
use a very fast algorithm (time beats quality). At a later time, use a better more
time-consuming algorithm.

Solution. This is dependent on requirement R12. The Thumbnailer service
already supports several flavors for a thumbnail. It currently provides a normal
and large size which could fulfill this requirement by using different algorithms for
each size.

Requirement R12 solution includes an abstract mechanism to add additional
passes. The first and second pass for thumbnail extraction could be considered
as additional passes to be configured in this abstract mechanism. This
mechanism will provide enough flexibility to connect to different algorithms.

Solution needs to be discussed in more detail with upstream Tracker maintainers.

Status. Satisfied.

2.6.2 THUMBNAIL RESOLUTION CONFIGURATION

Requirement R15. Resolutions for thumbnail flavors normal and high must be
configurable.

Analysis. Currently the resolution sizes are hard-coded in Tumbler source code.

Solution. The list of flavors for thumbnails, as well as its resolution will be
exposed through configuration files or via an API.
Status. Satisfied.

2.6.3 THUMBNAILING ALGORITHM CONFIGURATION

Requirement R16. The algorithm used for calculating the thumbnails must be
configurable.

Analysis. Currently Tumbler implements several plugins for thumbnail
calculation.

Solution. It is possible to add new plugins with specific algorithms or modify
existing plugins to use other algorithms. The algorithm used for thumbnailing
should be configurable. As an example, see the list of algorithms available
currently through gdk_pixbuf_scale() functions:

• Nearest: nearest neighbor sampling. This is the fastest and lowest
quality mode. Quality is normally unacceptable when scaling down, but
may be OK when scaling up.

• Tiles: this is an accurate simulation of the PostScript image operator
without any interpolation enabled. Each pixel is rendered as a tiny
parallelogram of solid color, the edges of which are implemented with
antialiasing. It resembles nearest neighbor for enlargement, and bilinear
for reduction.

• Bilinear: best quality/speed balance; use this mode by default. For
enlargement, it is equivalent to point-sampling the ideal bilinear-
interpolated image. For reduction, it is equivalent to laying down small
tiles and integrating over the coverage area.

• Hyper: this is the slowest and highest quality reconstruction function. It
is derived from the hyperbolic filters in Wolberg's "Digital Image
Warping".

For a complete list of the supported formats by Tumbler check Table 4: Formats
supported by Tumbler thumbnailer plugins.

Status. Satisfied.

2.7 DLNA (UPNP)

Requirement R17. Browsing DLNA (Digital Living Network Alliance) media
sources.

Analysis. There will be a player application in the Apertis platform to access and
control DLNA media sources. This application plays the role of Controller in DLNA
spec, it would be able to browse the media collection of remote Media Servers.
This information is provided by the Content Directory service on the Media Server.
The information provided about media content includes metadata like name,
artist, date created, size, album art, etc., as well as the protocols and data
formats supported by the server for that particular content item.

For more specific details on these topics see the UPnP AV (Universal Plug And Play
Audio Video) architecture documentation1.

Metadata indexing of media content in remote Media Servers is not required.
Indexing is not desirable normally, since enough metadata is normally provided by
the Content Directory service for browsing purposes, and local storage is scarce.
Apart the amount of storage needed could be in practice very high due to the
usage of remote sources.

Providing the Media Server and Media Renderer roles are out of scope for this
document of the Apertis platform.

Solution. Collabora proposes the GUPnP framework to fulfill the requirements.
The GUPnP library implements the UPnP specification: resource announcement
and discovery, description, control, event notification, and presentation. On top of
that, GUPnP-AV library is a collection of helpers for building AV (audio/video)
applications using GUPnP. The GUPnP framework is licensed under LPGL v2.1 and
it is written in C using GObject and libsoup. GUPnP is entirely single-threaded
(though asynchronous) and integrates with the GLib main loop.

Status. Satisfied.

1 http://www.upnp.org/specs/av/UPnP-av-AVArchitecture-v1.pdf

http://gtk.org/

2.8 ONLINE MEDIA SOURCES

Requirement R18. Access to online media sources.

Analysis. Depending on the actual media source, the specific functionality and
the API style provided will be different. For example, Google services like YouTube
and Picasa are accessed through the Google Data Protocol. In general, most of
these media sources are based on a REST based interface.

Solution. With few exceptions, like libgdata for Google Data Protocol, there are
not many good options in FOSS to access specific media source online providers.
However, in the worst case scenario we could use librest and libsoup, which are
described in chapter 3.5 Librest and libsoup.

Status. Satisfied.

2.9 BLUETOOTH AVRCP

Requirement R19. Browsing of media content from Bluetooth devices.

Analysis. Bluetooth AVRCP 1.4 allows to browse media contents in the Bluetooth
device. Indexing of this contents is not required.

Solution. This can be implemented by using the BlueZ API. Exact status about
AVRCP 1.4 implementation will be covered in more detail in Connectivity design
document.

Status. Moved to Connectivity design.

2.10 PLAYABILITY CHECK

Requirement R20. Playability check. Determine if a file is playable or not.

Analysis. We want to avoid showing the user a file which cannot be played. It is
not enough to do it through simple mime type checking, since this might lead to
false positives. Minimal check for corruption and codecs is required.

Solution. The playability has two steps:

1) At indexing time. During the Tracker indexing process, Tracker Extract is able to
extract information information about the mime type and audio / video codec for a
media content file. Additionally Tracker Extract process should be able to mark the
file in Tracker Store if any corruption is found on the file during the process of
metadata extraction.

As an example, during the process of thumbnail extraction for a video file
something similar happens, corruption or inability to decode a frame could be
found when trying to decode a specific frame to use it as a thumbnail. This file
would be marked as corrupted in Tracker Store.

Although the last example was about a video file, this applies to other types as
well, like audio files, and in general to any file where metadata extraction makes
sense. The metadata extraction process will be responsible to mark those files as
corrupted in the case it was not possible to extract metadata from them.

Tracker has the flexibility to change or add new extract plugins. Therefore, it will
be possible to customize or replace the plugins with more robust ones in case it is
needed.

2) At browsing time. There are some checks to do for media content files before
showing to the user. Check the file is not marked as corrupted. Check the file is
from a known mime type. Check a compatible decoder exists in the system for the
codec of the audio / video file. The list of codecs available can be obtained
through the GStreamer registry.

There is an special case at browsing time, in the case where the required
metadata is not available yet (probably due to the reason the file has not been
processed yet). In this case, the default would be to show the file until the
metadata is retrieved.

The solution comprehends changes in the two layers. Tracker (mostly Tracker
Extract) for the metadata retrieved at indexing time. And also at a higher level for
using the information and determine if the file is ultimately playable or not.

Note that the system is not 100% safe, since to guarantee that we would have to
decode all the frames.

Additionally, applications will be able to mark specific files as non-playable for
those cases playability cannot be determined until playback time.

Solution needs to be discussed in more detail with upstream Tracker maintainers.

Status. Satisfied.

3 APPENDIX: MEDIA MANAGEMENT TECHNOLOGIES
This chapter is focused on describing the current status of the various
technologies, without really including the specific additions or modifications
discussed on the requirements, which are covered in chapter 2 Solution.
Therefore, some of the technologies do not fully obey the requirements yet in its
current status, the modifications or additions needed to make them work as
desired are described on chapter 2.

3.1 TRACKER

Tracker2 is a semantic data storage for desktop and mobile devices. A semantic
data storage is basically a central repository of user information, which stores
relationships between pieces of data in a way that is re-usable among multiple
applications.

The concept is quite wide and applicable to different types of information like
pictures, messages, etc. But this document is just focused on media content, the
indexing of which is one of Tracker's primary functions.

This makes use of several existing technologies and standards:

• Resource Description Framework (RDF3). RDF is a directed, labeled
graph data format for representing information, and is a W3C standard.

• SPARQL4 is a W3C standard defining a query language for databases,
able to retrieve and manipulate data stored in RDF format.

• Ontologies5. An ontology represents knowledge as a set of concepts
within a domain, and the relationships between those concepts. It can be
used to reason about the entities within that domain and may be used to
describe the domain.

• Nepomuk6 (Networked Environment for Personalized, Ontology-based
Management of Unified Knowledge). Nepomuk is a research project,
which defined a set of ontologies describing desktop entities like files,
pictures, etc.

Tracker is a data store, an indexer and a search engine that allows the user to find
and link data easily. Tracker is typically used for searching the local storage. By
default Tracker comes with several indexing services called "miners". Tracker is
made up of several components:

• Tracker Storage. The data store and daemon to interface to Tracker's
databases.

• Tracker SPARQL7. The libtracker-sparql library is the foundation for

2 http://projects.gnome.org/tracker/
3 http://www.w3.org/RDF/
4 http://www.w3.org/TR/rdf-sparql-query/
5 http://developer.gnome.org/ontology/0.12/
6 http://www.semanticdesktop.org/ontologies/
7 http://developer.gnome.org/libtracker-sparql/0.12/

http://developer.gnome.org/libtracker-sparql/0.12/
http://www.semanticdesktop.org/ontologies/
http://developer.gnome.org/ontology/0.12/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/RDF/
http://projects.gnome.org/tracker/

Tracker querying and inserting data into the data store based on the
Nepomuk ontology.

• Tracker Miner8. The libtracker-miner library is the foundation for Tracker
data miners. These miners will extract metadata and insert it in SPARQL
form into the Tracker store, following the Nepomuk ontologies. Developers
can add new miners in order to index new data sources.

• Tracker Extract9. The libtracker-extract library is the foundation for
Tracker metadata extraction of embedded data in files. Tracker comes
with extractors written for the most common file types (like MP3, JPEG,
PNG, etc.). However, for rarer formats, it is possible to write plugins to
extract the metadata.

Ubuntu 12.04 currently has Tracker version 0.12.10, while the Apertis platform
was using 0.10.6. During these versions many fixes have been done as well as
some enhancements and improvements, but nothing really substantial. The
performance of several components, specially the Tracker filesystem miner has
improved in the 0.12 release. The limitations of Tracker are exposed in the context
of the requirements in chapter 2 Solution.

The preferences for each Tracker component can be managed through GSettings,
although there is also a UI application which is not interesting in the scope of this
project (tracker-preferences).

3.1.1 TRACKER STORAGE

The Tracker storage is divided in several parts as shown in the Illustration 4:
Tracker Storage.

• The public libtracker-sparql is the API layer used by the applications to

8 http://developer.gnome.org/libtracker-miner/0.12/
9 http://developer.gnome.org/libtracker-extract/0.12/

Illustration 4:
Tracker
Storage

http://developer.gnome.org/libtracker-extract/0.12/
http://developer.gnome.org/libtracker-miner/0.12/

access the Tracker storage using SPARQL. Internally, it uses the D-Bus
interface when writing access to the database is required. However, it
allows a more direct access to the database for read-only access (through
libtracker-data), which reduces the D-Bus traffic.

• The Tracker store daemon (tracker-store) provides a D-Bus interface
to access the RDF storage, and it also provides also a mechanism to
notify when changes happen in the RDF storage.

• libtracker-data is the library interfacing directly with SQLite database,
used by both tracker store and libtracker-sparql.

Below, there are listed the ontologies related with media content which are
supported by Tracker:

• Nepomuk File Ontology (nfo).

• Nepomuk ID3 (nid3).

• Nepomuk MultiMedia (nmm).

See below more details about the storage needs required by Tracker:
• SQLite10 database. The common configuration is to have separate

Tracker storage for each user. However, this can be set up depending on
the requirements of the platform, by changing environment variable
XDG_CACHE_HOME, as the Tracker SQLite database is stored in
$XDG_CACHE_HOME/tracker. Here are some rough numbers on SQLite
database space usage:
◦ Empty SQLite database. The database with initialized data, but without

indexing files requires about 1.2 Mbytes.
◦ Indexing Photos. As an approximate figure, our measurements show

about 800 Kbytes of database size is used for every 500 photos (aprox.
3 Gbytes of media). Note, the size in Gbytes is just an approximate
figure, since the amount of metadata scales with number of media
items and not with their size.

◦ Indexing Music. As an approximate figure, our measurements show
about 800 Kbytes of database size is used for every 300 mp3 songs (3
Gbytes of media).

• Write Ahead Log (WAL11) files. The Tracker database is stored in
SQLite using WAL. The WAL option allows better performance,
concurrency and reliability; at a cost of consuming extra disk space. This
file is part of SQLite. which is limited to 10,000 pages maximum, i.e. max
of 10 Mbytes. Furthermore, this space used is temporal since it will get
deleted as soon as the the database is checkpointed, which happens
automatically or when the limit is reached. There is an additional
relatively small file for shared memory, but that is transient and it does
not even use disk space, just memory.

• Ontologies. The file ontologies.gvdb is stored in the same directory as
the SQLite files. It is about 350 Kbytes, created on initialization. The size

10http://www.sqlite.org/
11http://www.sqlite.org/draft/wal.html

http://www.sqlite.org/draft/wal.html
http://www.sqlite.org/

does not depend on the data indexed, but on the ontology models.
• Tracker Journals. It stores all inserts, updates and deletes. Basically it is

a file that grows without bound, a reason why it has received some
criticism. It is meant for data redundancy and backup. The journal is also
used to cope with ontology changes. It can be disabled at compile time. In
fact, it was disabled on the Nokia N9, mainly due to the ever-growing
problem and privacy. Tracker journal can be a reasonable choice for a
desktop system, but in case of embedded devices it is better disabled. It
is stored in the $XDG_DATA_HOME/tracker/data directory.

Tracker Use Case Media in GiB Index in MiB Index in %

Empty database 0 GiB 11.5 NA
500 photos or 300 songs 3 GiB 12.3 0.4 %
5K photos or 3K songs 30 GiB 19.5 0.06%

5K photos and 3K songs 60 GiB 27.5 0.04%
83K photos and 50K songs 1000 GiB 277 0.03%

Table 1: Tracker use cases for storage utilization

Note: at the time of this writing, Ubuntu 12.04 was currently using SQLite 3.7.9
(November 2011), while the latest stable version available is 3.7.10 (January
2012).

Here are some configuration parameters for the Tracker Storage:

• Tracker DB Journal size. Size of the journal at rotation. By default 50
Mbytes.

• Tracker DB Journal rotate destination. Where to store the journal
chunk when it hits the max size.

3.1.2 TRACKER MINER

Tracker miners are responsible of finding content to index. Although in the context
of this document we are normally just interested in files, it could be any resource
able to be stored in Tracker. Tracker already comes with a filesystem miner.
Additionally other miners can be implemented for specific data sources (either
local or remote sources). Here are some configuration parameters for the
filesystem miner:

• Startup wait time. Primarily to avoid prevent Tracker from heavily
loading the system just after boot. By default 15 seconds.

• Scheduler priority. Specifies the priority of indexing directories and
files. There are three levels: when idle, first indexing on idle (default) and
anytime.

• Throttle. Controls the throttle of file indexing operations. This specifies
to control the overhead indexing has on the system. Of course, it is a

trade-off between system load and speed, but it can be tuned to make UI
applications more responsive. It is a value between 0 and 20, the higher
the slower. A value of 0 denotes "as fast as possible" (default), any other
number N denotes 20/N indexing operations per second. These limits can
of course be adjusted internally.

• Low disk space limit. A configurable parameter to stop indexing in case
of low free disk space. It is configurable between 0% (no limit) and 100%.
It is 1% by default.

• Crawling interval. Specifies the interval in days to check whether the
filesystem is up to date with the database. A value of -1 specifies the
check should only be done on unclean shutdowns and -2 specifies this
check should be disabled entirely.

• Removable days threshold. Specifies the threshold in days after which
metadata for files from removable devices will be removed if their
filesystem is not mounted. Zero means never. Configured to 3 days by
default.

• File monitoring. Option to track filesystem changes directly in order to
know what needs to be indexed.

• File Writeback. Option to write information back in the files, e.g.
metadata retrieved from other sources or updated by the application, it
can be stored back in the original file. It is limited to a few formats
currently.

• Index Removable Devices. Option to enable / disable the indexing of
removable devices.

• Index Optical Discs. Option to enable / disable the indexing of CDs,
DVDs, and in general any optical media.

• List of directories to index recursively. It can also refer to special
XDG directories like Desktop, Documents, Download, Music, Pictures,
Public, Templates and Videos.

• List of single directories to index (non-recursively). Same notes as
before.

• List of ignored files. Filenames can be specified with wildcards.

• List of ignored directories. Wildcards can be used to specify them.

• List of ignored directories with content. Avoid any directory
containing a file whose name is blacklisted in this list.

The Tracker Miner Manager keeps track of available miners, their current
progress/status, and also allows basic external control of them, such as pausing or
resuming data processing. It controls the scheduling of the different operations
through the configuration parameters already specified before. The miner only
does the crawling operation for files and sequencing the metadata extraction
scheduling. The actual metadata extraction is accomplished by Tracker Extract,
described in the next section.

The most widely used miner is the filesystem miner, responsible for indexing local
files. Other miners exist like UPnP miner, which indexes UPnP servers. The way to
create new filesystem miners will not be shown in this document, since there is no
requirement for it in this project.

See a general overview in Illustration 5: Tracker Miner Architecture.

Illustration 5: Tracker Miner Architecture

3.1.3 TRACKER EXTRACT

Tracker extract does the actual metadata extraction. It inspects the media content
and it extracts metadata information, which is stored in Tracker Store. There is a
list of the currently Tracker supported file formats12. It includes the main
formats for all the media content types of interest (music, music playlist, video,
picture, picture album and documents). The formats are summarized in the Table
2: Formats supported by Tracker.

12https:// wiki .gnome.org/Tracker/SupportedFormats

https://live.gnome.org/Tracker/SupportedFormats
https://live.gnome.org/Tracker/SupportedFormats
https://live.gnome.org/Tracker/SupportedFormats

Format MIME Requirement

Plain Text text/* -

MSOffice
application/msword
application/vnd.ms-* libgsf

MSOffice XML application/vnd.openxmlformats.officedocument.*
EPUB application/epub+zip libgsf
Oasis application/vnd.oasis.opendocument.* libgsf
ABW application/x-abiword -
PS application/postscript -
PDF application/pdf poppler >= 0.12.2

HTML
text/html
application/xhtml+xml

libxml >= 2.6

Adobe XMP application/rdf+xml libexempi >= 2.1.0

MP3
audio/mpeg
audio/x-mp3

-

Vorbis
audio/x-vorbis+ogg
application/ogg

libvorbis >= 0.22

FLAC audio/x-flac libflac >= 1.2.1

Playlist

audio/x-mpegurl
audio/mpegurl
audio/x-scpls
audio/x-pn-realaudio
application/ram
application/vnd.ms-wpl
application/smil
audio/x-ms-asx

Totem-plparser

PNG
image/png
sketch/png

libpng >= 1.2

JPEG image/jpeg libjpeg
TIFF image/tiff libtiff
GIF image/gif libgif
ICO image/vnd.microsoft.ico -

Generic
GStreamer

audio/*
video/*;video/3gp;video/mp4;video/x-ms-afs
image/*;image/svg+xml
application/vnd.rn-realmedia
dlna/*

gstreamer-0.10 >=
0.10.12 gstreamer-tag-
0.10 >= 0.10.1

Table 2: Formats supported by Tracker

Note: in some Tracker extract plugins like the GStreamer one, the actual formats
able to be extracted depend on the specific GStreamer plugins installed on the
system.

The extract plugins are built as dynamic libraries which are load at run-time.
There is a text file to configure what mime types an extract plugin understands
and which library file is. There are two types of extract plugins, specific and
generic. Specific extractors are preferred if they exist, otherwise generic ones are
used (e.g. like audio/*).

In case more formats need to be supported, they can be easily added to Tracker
by implementing extra plug-ins. They are relatively simple to implement; the
function tracker_extract_get_metadata() simply has to be provided. For more
details, check the example in the Tracker Extract documentation13.

Tracker Extract is a D-Bus daemon with a very simple interface, to get metadata
and to cancel existing tasks. Tracker Extract daemon can be configured to
automatically shutdown when idle after a certain period of time, allowing to free
resources. Also, it detects extract operations that take too much time and aborts
them.

These are the configuration options for Tracker Extract:

• Scheduler priority. Specify the priority of extracting metadata. There
are three levels: when idle, first indexing on idle (default) and anytime.

• Max bytes. Maximum number of bytes to extract for text files. This is
used just for text extraction (when full text search is enabled), since it can
make grow the index database significantly. The default is 1 MByte, and
the maximum 10 MBytes.

3.1.4 TRACKER SCHEDULING

Tracker employs several background processes: Tracker Store, Tracker Miner and
Tracker Extract. Tracker Miner and Extract do the heavier work in a autonomous
way and they can potentially consume a lot of resources. Tracker Miner
Manager controls and monitors Tracker Miners, scheduling all their operations,
including crawling the filesystem and invoking metadata extract operations.

Tracker Miner and Extract can have their CPU scheduling priority configured (as
described before). Tracker Store daemon does not need its CPU priority configured
since it works on demand; it must always be running and process any request by
user apps or other processes. Additionally, all Tracker daemons have IO priority
set to minimum, to interfere the least possible with other applications.

The Tracker Filesystem Miner sets up a filesystem notifier with the directories to
index. The filesystem notifier is responsible for finding the directories and files to
index, and to monitor and notify of any changes. Tracker Filesystem Miner has
several priority queues; one per type of operation. Tracker Miner processes items
from these queues when it becomes idle. The priority of the types of operations
from highest to lowest is: writeback operations, deleted items, created items,
updated items, moved items.

After the operation is removed from the queue, it gets added to the task pool
while it is running. The length of the task pools is checked before adding new
operations to it to avoid overloading the system. The items in the task pools are
processed in several steps. Initially, the information is captured without inspecting
the content files, properties like mime type, size, modification and creation time,
etc. In a second step, a request is done to Tracker Extract to extract more
information from the file.

13http://developer.gnome.org/libtracker-extract/0.12/libtracker-extract-How-to-use-libtracker-
extract.html

Thumbnails are not requested by the Tracker Miner Manager. But if a file with an
existing thumbnail gets moved or deleted, the thumbnail will be updated too (so
the thumbnail filename will get renamed or deleted too).

3.2 THUMBNAIL MANAGEMENT

The Thumbnail Managing Standard14 deals with the permanent storage of
previews for file content. The Thumbnail Management D-Bus specification15
is a standardized D-Bus API to deal with thumbnailing. This D-Bus specification is
currently implemented by Tumbler, which has been already used successfully in
consumer products like the Nokia N9 phone. With a D-Bus specification for
thumbnail management, applications don't have to implement thumbnail
management themselves. If a thumbnailer is available they can delegate
thumbnail work to a specialized service. The service then calls back when it has
finished generating the thumbnail.

Thumbnailing is an expensive operation. Therefore, it is meant to be requested by
applications on-demand, i.e. If the application needs a thumbnail for a file it
should request explicitly for it to the Thumbnailer service.

Some features provided by the Thumbnailing service that can be interesting in our
context:

• Provide the ability to handle different thumbnail flavors (sizes). By default
two flavors exist:

1. Normal configured by default as 128x128.

2. Large configured by default as 256x256.

• Possibility to implement thumbnailers for closed formats or with customized
features.

• Complexity of a LIFO queue and setting I/O and scheduling priorities for
background thumbnailing is no longer the responsibility of the application
developer.

• Extensibility with plug-ins. This is useful to support for additional file types
or when different interpolation algorithms are required.

There are several components in the Thumbnailer service:

• Thumbnailer. Calculates the thumbnail for a specific file format.

• Thumbnailer Manager. A register of available Thumbnailers is available
at runtime.

• Thumbnail Cache. This avoids regeneration of thumbnails when files are
copied or moved and cleans up the cache sporadically and when a file is
deleted. This is managed automatically by Tracker Filesystem Miner.

The thumbnails are stored in $XDG_CACHE_HOME/thumbnails/[SIZE]/(md5sum of
original URI).png. Thumbnails for files on removable devices may instead be

14http://specifications.freedesktop.org/thumbnail-spec/thumbnail-spec-latest.html
15https://wiki.gnome.org/DraftSpecs/ThumbnailerSpec

https://wiki.gnome.org/DraftSpecs/ThumbnailerSpec
http://specifications.freedesktop.org/thumbnail-spec/thumbnail-spec-latest.html

stored in a shared thumbnail repository on the removable device, as
.sh_thumbnails/[SIZE]/(md5sum of original filename not including path).png,
relative to the file. See §10 of the Thumbnail Managing Standard.

One of the advantages of Tumbler is that the scheduler is abstracted, there are
two options implemented: a background scheduler using a first-in-first-out (FIFO)
queue and a foreground one using a last-in-first-out (LIFO) queue. Tumbler has
been used successfully in several environments including XFCE, Maemo and
MeeGo. GNOME uses GnomeThumbnail API to generate thumbnails. EFL is using
ethumb. Although there are not many differences between the different
Thumbnailing services, Tumbler is one of the most advanced since it is a real
service and not a library, and it provides scheduling features. Additionally,
Tumbler comes packaged for popular distributions like Ubuntu and Fedora, and it
has the extra advantage of being already integrated with Tracker, as we saw in
previous section.

Tumbler can be extended to support new thumbnails types as needed with
plugins. There are already existing plugins for GStreamer, JPEG, font, a large
collection of image formats (GDK pixbuf), PDFs (libpoppler), etc. See Table 4:
Formats supported by Tumbler thumbnailer plugins for a list of content types
Tumbler supports, but keep in mind in case a specific format is not supported it
could be added via its plugin API.

Video thumbnails can be generated using the GStreamer thumbnailing plugin.
This plugin already provides an heuristic method to extract the thumbnail from a
video stream, by selecting a frame with a wide distribution of colors (to avoid
presenting a title screen or other essentially-blank frame).

It is interesting to keep a look on the disk space utilization for thumbnails. After
doing some measures, we found out that thumbnails occupy 13 kilobytes for
128x128 pixel size, and about 29 kilobytes for 256x256 size. See Table 3:
Thumbnail storage utilization for a use case scenario.

Thumbnail Use Case Media in Gb
Thumbnail size in Mb

normal + large =
total

Usage in
%

500 photos 3 Gb 6.3 + 13.7 = 20 0.65 %
5K photos 30 Gb 63.5 + 141.6 = 205.1 0.67 %

166K photos 1000 Gb
2107.4 + 4701.2 =

6808.4
0.66 %

Table 3: Thumbnail storage utilization

Tumbler
Thumbnailer
Plugin

MIME type

font
application/x-font-otf, application/x-font-pcf,
application/x-font-ttf, application/x-font-type1

gstreamer

application/asx, application/ogg, application/x-flash-video, application/x-ms-
wmp, application/x-ms-wms, application/x-ogg, video/3gpp, video/divx,
video/flv, video/jpeg, video/mp4, video/mpeg, video/ogg, video/quicktime,
video/x-flv, video/x-m4v, video/x-matroska, video/x-ms-asf, video/x-ms-wm,
video/x-ms-wmp, video/x-ms-wmv, video/x-ms-wvx, video/x-msvideo,
video/x-ogg, video/x-wmv

jpeg image/jpeg

odf

application/vnd.ms-powerpoint, application/vnd.openxmlformats-
officedocument.presentationml.presentation, application/vnd.ms-excel,
application/vnd.openxmlformats-officedocument.spreadsheetml.sheet,
application/msword, application/vnd.openxmlformats-
officedocument.wordprocessingml.document,
application/vnd.oasis.opendocument.presentation-template,
application/vnd.oasis.opendocument.presentation,
application/vnd.oasis.opendocument.spreadsheet-template,
application/vnd.oasis.opendocument.spreadsheet,
application/vnd.oasis.opendocument.text-template,
application/vnd.oasis.opendocument.text-master,
application/vnd.oasis.opendocument.text,
application/vnd.oasis.opendocument.graphics-template,
application/vnd.oasis.opendocument.graphics,
application/vnd.oasis.opendocument.chart,
application/vnd.oasis.opendocument.image,
application/vnd.oasis.opendocument.formula,
application/vnd.sun.xml.impress.template,
application/vnd.sun.xml.impress.template, application/vnd.sun.xml.impress,
application/vnd.sun.xml.calc.template, application/vnd.sun.xml.calc,
application/vnd.sun.xml.writer.global,
application/vnd.sun.xml.writer.template, application/vnd.sun.xml.writer,
application/vnd.sun.xml.draw.template, application/vnd.sun.xml.draw,
application/vnd.sun.xml.math, image/openraster,

pixbuf

image/tiff, image/jpeg, image/svg+xml-compressed, image/x-xpixmap,
image/x-MS-bmp, image/x-wmf, image/x-xbitmap, image/x-icns,
image/jpeg2000, image/x-pcx, image/svg+xml, text/xml-svg, image/x-ico,
image/jpx, image/x-portable-anymap, image/x-win-bitmap, image/x-sun-
raster, image/vnd.adobe.svg+xml, image/jp2, image/x-portable-graymap,
image/qtif, image/x-cmu-raster, image/png, application/x-navi-animation,
image/vnd.wap.wbmp, image/x-icon, image/svg, image/x-portable-pixmap,
image/x-bmp, image/x-portable-bitmap, image/x-quicktime, image/bmp,
image/svg-xml, image/gif, image/x-tga

poppler application/pdf, application/postscript
raw image/x-adobe-dng, image/x-canon-cr2, image/x-canon-crw,

image/x-epson-erf, image/x-nikon-nef, image/x-nikon-nrw, image/x-olympus-
orf,

image/x-panasonic-raw, image/x-panasonic-rw2, image/x-pentax-pef,
image/x-sony-arw, image/x-minolta-mrw

Table 4: Formats supported by Tumbler thumbnailer plugins

3.2.1 MEDIA ART STORAGE

Media Art Storage16 provides a mechanism for applications to store and retrieve
artwork associated with media content, like music from an album, the logo for a
radio station, or a graphic representing a podcast. The storage medium for
artwork is the filesystem inside a user's home directory or in
$XDG_CACHE_HOME/media-art/. Tracker manages and requests media art for the
albums and artists.

In some situations it is desirable to have a local media art repository (for example,
for read-only media or for USB removable devices). The location for local media
art will be a subdirectory named .mediaartlocal/ within the same directory as
the album's files.

Tracker already checks for media art present in the indexed folders. Additionally it
is able to request the downloading of album art to the album art provider installed
in the system. There is already a FOSS album art provider example using Google
Images, but it can be replaced by other implementations extracting album art
from other sources just by implementing a D-Bus service with the interface
com.nokia.albumart.Requester.

Thumbnails of media art follow the Thumbnail Specification. The URI used to
determine the thumbnail path is the full URI pointing to the original media art. For
the path to the thumbnail refer to the Thumbnail Specification itself. A media art
fetcher is allowed to store the normal and large thumbnails immediately after
download of the media art is completed. A media art fetcher is, however, not
required to do this by itself (the thumbnail infrastructure will or should take care
of this if the media art is not thumbnailed yet).

3.3 GRILO

Grilo17 is a simple API for browsing and searching media content from various
sources using a single API. Applications will be able to browse and discover media
content by using the Grilo API. This API will provide media content and its
metadata, and GStreamer framework will be able to play video or audio content
(either local or remote).

A single, high-level API that abstracts the differences among various media
content providers, allowing application developers to integrate content from
various services and sources easily. Grilo comes with a collection of plugins for
accessing various media providers, like Vimeo, Flickr, YouTube etc. so they can be

16https://wiki.gnome.org/DraftSpecs/MediaArtStorageSpec
17https://wiki.gnome.org/Projects/Grilo

https://wiki.gnome.org/Projects/Grilo
https://wiki.gnome.org/DraftSpecs/MediaArtStorageSpec

presented uniformly via the Grilo API. Additionally a grilo-tracker plugin exists,
which uses the Tracker service (described in past sections), to make media
indexed by Tracker available through the Grilo API.

There is an additional Grilo plugin for accessing the filesystem directly (grl-
filesystem), which checks for media content in a set of configured directories. The
defaults are the XDG user directories for pictures, music and videos.

Although Grilo can be used to access many media content sources, we suggest
only using it for accessing local media content. The next sections will dig into
Grilo's details and its advantages. The main advantages of using Grilo instead of
Tracker directly for this specific use case:

• Tracker is a semantic data storage, which can be used to store other bits
of information apart of indexing information from media content like
messages, calendars, etc. In other words, it is a very general framework
usable for many purposes. Therefore, it makes sense to provide a higher
level specialized API for media browsing (Grilo) on top of Tracker to hide
its complexity from media applications.

• Grilo has some plugins that might be useful to extract additional
metadata, e.g. album art from last.fm. Grilo is specially recommended for
accessing to metadata from the Internet, which is not meant to be
indexed. In addition, the platform could take advantage of future plug-ins
which are planned to be developed by the FOSS community like lyrics,
moviedb.org, etc.

• Grilo would support using an indexer other than Tracker if a better one
becomes available. More importantly, applications wouldn't have to be
modified to take advantage of such a change.

See illustration 6 for an overview of the Grilo Architecture. Note the boxes with
grey background are not going to be used in the context of the Apertis project.

3.3.1 GRILO MEDIA SOURCE PLUGINS

The plugin must create at least one GrlMediaSource instance, and register it in the
Grilo registry. A GrlMediaSource represents a particular source of media. These
plugins provide several functions:

• Search content by keywords.
• Browse the media content in a hierarchical way. It is similar to exploring a

filesystem, entering into folders (GrlMediaBox) and browsing files in it.
• Query allows access to content using service specific language. Normally it

provides additional filtering capabilities. This is used by applications to
support plugin-specific functionality.

• Metadata used to request additional metadata.
• Store (optional), supports to push content to the source.
• Remove (optional), to remove stored contents from the source.
• Supported keys provides information on which metadata keys are

provided by the plugin. Typical metadata keys are: id, title, url, thumbnail,
mime, artist, duration.

• Slow keys (optional) provides info on which metadata keys are expensive
to gather. So the applications could just ask for non-expensive ones
normally, and only require the slow keys when details are required for a
particular media content.

• Media from URI. Gets GrlMedia from a URI. For example a file browser may
use this to get metadata for a specific file.

• Test Media from URI (optional). To check if the plugin can convert a URI

Illustration 6: Grilo Architecture

into a GrlMedia object.
• Notifications on changes on media content.

At least one of the content retrieval methods is expected to be implemented:
search, browse or query. Each media content result of the search/browse/query is
represented by a GrlMedia object.

Plugins should be implemented in a non-blocking way to have a smooth user
experience in applications. Also threads are not recommended; splitting work into
chunks using the idle loop is encouraged.

There is a standard set of metadata keys defined, but plugins can define their own
custom metadata keys.

A GrlMedia can have multi-valued properties; for example a YouTube video with
different resolutions (and thus, different URIs). It is also possible to associate
different properties with each URI of a GrlMedia.

3.3.2 GRILO METADATA PLUGINS

Grilo metadata source plugins do not provide access to media content, but
additional metadata information. An example would be to provide thumbnail
information for local audio content from an online service.

This plugin must create at least one GrlMetadataSource instance, and register it in
the Grilo registry. The plugin provides several functions:

• Resolve retrieves additional information for a GrlMedia object.

• May resolve: to check if Resolve may be performed with existing
information.

• Set metadata (optional): set the play count or the last time a media was
played.

• Writable keys (optional): reports which keys can be stored.

• Supported keys: provides information on which metadata keys are
provided by the plugin.

• Slow keys (optional): provides info on which metadata keys are expensive
to gather. So the applications can ask for inexpensive keys normally, and
only request the slow keys when details are required for a particular media
content.

• Cancel operations: cancels ongoing operations.

3.4 GOOGLE DATA PROTOCOL

YouTube, as well as other Google services like Picasa, use the Google Data
Protocol18. The Google Data Protocol is a REST-inspired technology for reading,
writing, and modifying information on the web. The protocol currently supports
two primary modes of access: AtomPub and JSON. The JSON is a mapping of Atom

18http://code.google.com/apis/gdata/

http://code.google.com/apis/gdata/

items to JSON objects meant to be used for web applications written in JavaScript.

The AtomPub mode is based on the Atom Publishing protocol, with namespaced
XML additions. Communication between the client and server is broadly achieved
through HTTP requests with query parameters, and Atom feeds being returned
with result entries. Each service has its own namespaced additions to the GData
protocol; for example, the Google Calendar's API has specializations for addresses
and time periods.

Collabora proposes libgdata19, which is a library to allow access to web services
using the Google Data Protocol from traditional applications. Results are always
returned in the form of result feeds, containing multiple entries. How the entries
are interpreted depends on what was queried from the service, but when using
libgdata, this is all taken care of transparently. The main dependencies of libgdata
are libsoup, libxml and liboauth.

Other frameworks and applications are already using libgdata with success, e.g.
evolution-data-server, Totem's YouTube plugin and Grilo's YouTube plugin.

The library libgdata already provides an implementation for the YouTube
service20 (GdataYouTubeService), which provides the following functionality:

• Query videos.

• Query videos related to a specific video.

• Query standard feed types: top rated, top favorites, most viewed, most
popular, most recent, most discussed, most linked, most responded,
recently featured and watch on mobile.

• Upload a video.

• Get categories.

3.5 LIBREST AND LIBSOUP

It is difficult to find libraries to access online media sources if they are not
provided by the vendors themselves. However, most of these online media
sources are based on HTTP protocol with REST21 interfaces. Therefore, in general,
librest22 and/or libsoup23 will be useful. Librest is a library designed to make it
easier to access web services that are designed in a "RESTful" manner. Libsoup is
an HTTP client/server library for GNOME. It uses GObjects and the glib main loop,
to integrate well with GNOME applications. Collabora can suggest or provide
advise for open-source ways for accessing these services on request. This is the
most effective way to access all the features.

19http://developer.gnome.org/gdata/0.10/gdata-overview.html
20http://developer.gnome.org/gdata/0.10/GDataYouTubeService.html
21http://en.wikipedia.org/wiki/Representational_state_transfer
22https:// wiki .gnome.org/Librest
23http://developer.gnome.org/libsoup/

http://developer.gnome.org/libsoup/
https://live.gnome.org/Librest
https://live.gnome.org/Librest
https://live.gnome.org/Librest
http://en.wikipedia.org/wiki/Representational_state_transfer
http://developer.gnome.org/gdata/0.10/GDataYouTubeService.html
http://developer.gnome.org/gdata/0.10/gdata-overview.html

3.6 PLAYLISTS SUPPORT

Playlists are supported in Tracker. There is an specific Tracker Extract plugins to
handle playlists, which is using internally the Totem Playlist Parser24 library,
which is conveniently abstracted and independent of Totem. Tracker Extract
introduces the metadata retrieved in Tracker Store using the class nmm:Playlist,
which is a subclass of nfo:MediaList. The entries in the playlist are introduced as
nfo:MediaFileListEntry.

The supported playlist formats in Totem Playlist Parser are: audio/x-mpegurl,
totem-plparser, audio/x-scpls, audio/x-pn-realaudio, application/ram,
application/vnd.ms-wpl, application/smil and audio/x-ms-asx.

Grilo does not support playlists in the latest stable version available, so this
feature would need to be added as specified in the requirements section.

24http://developer.gnome.org/totem-pl-parser/stable/

http://developer.gnome.org/totem-pl-parser/stable/

4 APPENDIX: QUESTIONS & ANSWERS
These chapter contains very specific questions that have been asked during
workshops.

Q: Will asking for a specific prioritization during metadata extraction
increase the load by running multiple indexing jobs ?

A: No, the Tracker scheduler will manage all metadata indexing operations in
internal queues, so prioritization will just change the sorting of the metadata
indexing operations, but not the overall system load. Note the scheduling system
proposed in this document is not implemented in Tracker yet. See section 2.5
Indexing Scheduling and 3.1.4 Tracker Scheduling for more details on prioritization
and Tracker scheduling.

Q: How does the system know when to renew thumbnails ?

A: When a thumbnail is generated, some properties are stored inside it like the
original URI and the modification time of the original file. If the original file is
modified at some point, its modification time will get changed automatically by
the Linux filesystem. So, it is possible to know when a thumbnail is outdated.
Additionally, Tracker is monitoring the filesystem for changes. In case a file is
modified, added, moved or deleted its thumbnail will be automatically updated.
Note: this feature is not fully implemented yet, but it is part of the modifications
Collabora will implement.

Q: How the mime type of the files is determined ?

A: This is done through glib, which finds out the mime type in a efficient way and
it is used extensively by all GNOME based software. The details of the algorithm
used can be seen in the Shared MIME Info Specification25, it has been designed to
be robust and efficient. The first thing done is to test the filename extension to
see if it is a recognized type. If this operation cannot be done or the result is
uncertain, a second check will be done using the first bytes of the file checking for
the signature of known files. For more details see g_file_query_info,
G_FILE_ATTRIBUTE_STANDARD_CONTENT_TYPE and g_file_info_get_content_type
in GNOME documentation.

Q: How the video thumbnailing works to avoid black video frames or
uninteresting frames in general ?

A: From section 3.2 Thumbnail Management: "Video thumbnails can be generated
using the GStreamer thumbnailing plugin. This plugin already provides an
heuristic method to extract the thumbnail from a video stream, by selecting a
frame with a wide distribution of colors (to avoid presenting a title screen or other
essentially-blank frame). Other ways could be implemented if required, just by
implementing a thumbnail plugin.

25http://standards.freedesktop.org/shared-mime-info-spec/shared-mime-info-spec-latest.html

Q: How document thumbnailing works to avoid thumbnails of blank
pages ?

A: The existing Tumbler plugins used to extract thumbnails from Open/LibreOffice,
PDF and Microsoft Office documents gets the thumbnail stored inside the file. It is
responsibility of the office applications to write a proper thumbnail. Typically it is
just the thumbnail of the first page of the document, which usually is the best
option since the first page contains the title in bigger font sizes, cover of the
document and logos. Any other approach is debatable, so Collabora does not
recommend to make thumbnails from only text pages since they are less likely to
be useful, thumbnailing normal text would become unreadable.

Q: How the applications can store and retrieve the last time a media file
was played ?

A: This functionality can be provided by the Grilo metadata store plugin. The
application must query the last values and set new values through Grilo API. The
media file is identified via the file URI. The metadata store plugin stores these
values in a Tracker database. It currently supports the following values: last
position where media item was played (GRL_METADATA_KEY_LAST_POSITION),
number of times a media item has been played
(GRL_METADATA_KEY_PLAY_COUNT) and last date a media item was played
(GRL_METADATA_KEY_LAST_PLAYED). Grilo is making use of the properties already
defined on the Tracker ontologies like nfo:lastPlayedPosition, nie:usageCounter
and nie:contentAccessed. A benefit of using Grilo is that Tracker details are not
exposed to the applications, for example alternatively Grilo has another plugin to
store these fields in a separate SQLite database in case Tracker was not used, but
the API to set and get these properties would be the same.

Q: How a thumbnail is retrieved ?

A: Thumbnails can be retrieved through different ways depending on what specific
APIs the application is using. The best way for media applications would be
through the Grilo API, see grl_media_get_thumbnail and
grl_media_get_thumbnail_binary_nth (in case several thumbnails are available for
a media item). Grilo API is internally using glib library to retrieve this through
g_file_query_info, G_FILE_ATTRIBUTE_THUMBNAIL_PATH and
g_file_info_get_attribute_byte_string. Grilo API will need to be modified in case
more thumbnails need to be stored on the USB flash devices.

Q: How the system behaves on robustness on power loss ?

A: This and other questions on system robustness will be answered on a separate
document focused on system robustness. Anyway, please see chapter 2.4.3
Indexing database on removable device for an advance of some issues regarding
USB flash devices.

Q: How a media file from a USB Flash device is identified ?

A: It is identified by its complete URI, e.g. /media/D8C0-024E/Joaquin

Sabina/Joaquin Sabina & Fito Paez - Llueve sobre mojado.mp3". In some systems,
USB flash devices are mounted on a directory with a hex identifier (depending on
system configuration). This identifier is the UUID (Universally Unique Identifiers),
not the label of the USB flash device. It is generated when the filesystem is
created, and it is very. Generally it is a 128 bit identifier, but some filesystems like
VFAT have smaller resolution (32 bits).

Q: Is it configurable the timeout for Tracker extract operations ?

A: No, they are not currently, but it would be simple to make them configurable
for example through GSettings. There are two timeouts. A watchdog timeout
which is checks that the tracker extract process does not hang during metadata
extraction (by default set to 20 seconds). There is an additional idle timeout,
which stops a tracker extract process if it has been idle for some time (30 seconds
by default).

Q: Does Tracker retry in case Tracker Extract fails due to the watchdog
timer ?

A: By default, Tracker retries up to two times if a tracker extract process fails. It
will also retry in case the file is modified or the USB flash where it is located is
reinserted.

Q: Does Tracker store marks for the corrupted files ?

A: Currently, there is no property to identify corrupted files in Tracker. A file whose
extract process has failed due to corruption in the file, it would just have
properties from the nfo ontology (nepomuk file object), but it would not have
properties from other subclasses like nmm (nepomuk multimedia).

Q: There are reports of performance of page queries on Tracker
databases is negatively affected by the number of rows in the database.
Collabora to double check.

A: Some tests running SPARQL queries have been done with databases near 6000
items and the mentioned problem was not reproducible (no performance
problems found). Please provide data set and application code reproducing this
problem for further investigation.

Q: Should Tracker be used for Radio Stations information ?

A: Tracker has already ontologies to store radio station information. So, it would be
possible to use it to store and retrieve the user favorite radio stations. However,
the interface to access and update this information would be through plain
SPARQL, which has a step learning curve for developers. Additionally, the radio
station information is not shared with other applications. The only advantage of
using Tracker would be that the global search would automatically work for radio
station information, so it would not be necessary to implement an extra global
search plugin to look for this info in another database. The final decision must

take into consideration how well the existing ontology for radio stations
(nmm:RadioStation26) is suited to Apertis' roadmap.

Q: What happens when a USB flash device is inserted in a USB port ?

A: When the user inserts an USB flash device, there are three main components
participating in the action:

• Linux kernel (including device drivers). The kernel will be able to
communicate with the device as soon as it is powered up, initialized and
announced through the USB Bus.

• Udev27 is the device manager for the Linux kernel. Primarily, it manages
device nodes in /dev. It is the successor of devfs and hotplug, which
means that it handles the /dev directory and all user space actions when
adding/removing devices, including firmware load. The Udev daemon
listens to the netlink socket used by the kernel to communicate with user
space applications. The kernel will send a bunch of data through the
netlink socket when a device is added to, or removed from a system. The
Udev daemon catches all this data and will do the rest, i.e., device node
creation, module loading etc.

• UDisks28 (formerly known as DeviceKit-disks) lies on top of udev, and it is
an abstraction for enumerating disk and storage devices and performing
operations on them. It is is a replacement for part of the functionality
which used be provided by the now deprecated HAL (Hardware
Abstraction Layer). UDisks is a user daemon with D-Bus interface which
gets notifications from udev.

See Table 5: Timeline of events on USB flash device insertion for an idea of what
happens when a USB flash device is inserted. The table provides a general idea
about the timings for different operations in the system. Note, although the
timings are based on real measures, are not guaranteed since the all the software
components have not been completely built yet and timings depend on the actual
hardware used.

Timeline (s) Delay (s) Event

0 -
(1) User inserts a USB flash device in the system, one which has
never been indexed before.

2.8 2.8
(2) UDisks daemon reports a USB flash device has been inserted
via D-Bus. The user application could be autostarted at this point.

3.6 0.8
(3) UDisks daemon notifies the partition in the USB Flash has
been mounted automatically. The filesystem is accessible from
now on. Tracker Filesystem Miner will start crawling the filesystem.

4.9 1.3
(4a) Media files in the root directory of the USB flash device are
shown to the user.

26http://developer.gnome.org/ontology/0.14/nmm-ontology.html
27http://www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-Hartman-OLS2003.pdf
28http://www.freedesktop.org/wiki/Software/udisks

http://www.freedesktop.org/wiki/Software/udisks
http://www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-Hartman-OLS2003.pdf
http://developer.gnome.org/ontology/0.14/nmm-ontology.html

Timeline (s) Delay (s) Event

5.4 0.5

(4b) Tracker has finished crawling the filesystem to find out all
entries in the filesystem. At this point we can have counters per
media type. This timing measure was taken for a full file system
scan of a 7 GiB used USB flash device with 1407 files organized
in multiple directories. As we can appreciate, there is a high fixed
cost in (4a), while the total scan cost (4b) is not so high.

6 0.6
(5a) Tracker Extract has metadata for the files that have been
returned in the first page shown to the user.

46 40
(5b) Tracker Extract finishes gathering metadata for all files in the
USB flash device (7 GiB, 1407 files). This gives a throughput of
approximately 34 songs extractions/s.

Table 5: Timeline of events on USB flash device insertion

Q: How does the monitoring of filesystem changes work in Tracker ?

A: The monitoring of changes in files and directories of the filesystem is handled
internally by Tracker Miner via the GFileMonitor29 API. Note GFileMonitor is just
an abstraction in glib, which abstracts the file monitoring functionality, since
there are several backends available implementing such functionality
depending on the specific operating system. Note, this mechanism is a very
efficient way to get notified about changes on the filesystem, since it is directly
provided by the kernel, instead of doing active polling. Linux uses the inotify
backend. For a more detailed view of the inotify API see the tutorial "Monitor
filesystem activity with inotify"30.

29http://developer.gnome.org/gio/unstable/GFileMonitor.html
30http://www.ibm.com/developerworks/linux/library/l-ubuntu-inotify/index.html

http://www.ibm.com/developerworks/linux/library/l-ubuntu-inotify/index.html
http://developer.gnome.org/gio/unstable/GFileMonitor.html

	Document Change Log
	1 Introduction
	2 Solution
	2.1 Technology and Solution Overview
	2.2 Local Storage Media Source
	2.3 Media Browsing Requirements
	2.3.1 File-system based browsing
	2.3.2 Notification on metadata changes
	2.3.3 Paged queries

	2.4 Media Indexing Database Requirements
	2.4.1 Media indexing of shared and private files
	2.4.2 Database version management
	2.4.3 Indexing database on removable device

	2.5 Indexing Scheduling
	2.5.1 Media Content Counters
	2.5.2 Prioritized extraction per content type
	2.5.3 Selective prioritized extraction
	2.5.4 Selective prioritized thumbnailing
	2.5.5 Multi pass metadata extraction
	2.5.6 Concurrency configurable

	2.6 Thumbnailing
	2.6.1 Two-step thumbnailing
	2.6.2 Thumbnail resolution configuration
	2.6.3 Thumbnailing algorithm configuration

	2.7 DLNA (UPnP)
	2.8 Online Media Sources
	2.9 Bluetooth AVRCP
	2.10 Playability check

	3 Appendix: Media Management Technologies
	3.1 Tracker
	3.1.1 Tracker Storage
	3.1.2 Tracker Miner
	3.1.3 Tracker Extract
	3.1.4 Tracker Scheduling

	3.2 Thumbnail Management
	3.2.1 Media Art Storage

	3.3 Grilo
	3.3.1 Grilo Media Source Plugins
	3.3.2 Grilo Metadata plugins

	3.4 Google Data Protocol
	3.5 Librest and libsoup
	3.6 Playlists support

	4 Appendix: Questions & Answers
	Q: Will asking for a specific prioritization during metadata extraction increase the load by running multiple indexing jobs ?
	Q: How does the system know when to renew thumbnails ?
	Q: How the mime type of the files is determined ?
	Q: How the video thumbnailing works to avoid black video frames or uninteresting frames in general ?
	Q: How document thumbnailing works to avoid thumbnails of blank pages ?
	Q: How the applications can store and retrieve the last time a media file was played ?
	Q: How a thumbnail is retrieved ?
	Q: How the system behaves on robustness on power loss ?
	Q: How a media file from a USB Flash device is identified ?
	Q: Is it configurable the timeout for Tracker extract operations ?
	Q: Does Tracker retry in case Tracker Extract fails due to the watchdog timer ?
	Q: Does Tracker store marks for the corrupted files ?
	Q: There are reports of performance of page queries on Tracker databases is negatively affected by the number of rows in the database. Collabora to double check.
	Q: Should Tracker be used for Radio Stations information ?
	Q: What happens when a USB flash device is inserted in a USB port ?
	Q: How does the monitoring of filesystem changes work in Tracker ?

