
Apertis
Preferences and

Persistence
Design

Author: Philip Withnall
Contributors: Simon McVittie, Gustavo Noronha
Version: 0.2.0.1
Status: Draft
Date: 2015-11-17
Last Reviewer: Ekaterina Gerasimova

This design was produced exclusively using free and open source software.

Please consider the environment before printing this document.

DOCUMENT CHANGE LOG
Version Date Changes

0.2.0.1 2015-11-17 • Delete obsolete document properties
• Improve language

0.2.0 2015-06-01 • Add references to the Robustness Design
document.

• Add Rollback (3.3), Transactional updates (3.8) and
Storage of user secrets and passwords (3.15)
requirements.

• Expand Factory reset requirement (3.4) to cover
clearing a single (user, app) pair.

• Clarify suggestions regarding templated preference
UIs.

• Clarify that apps are responsible for upgrading
their own schemas.

0.1.0 2015-05-12 • New document to summarise discussions from
various bug reports.

Table of Contents
 Document Change Log..2
1 Introduction...5
2 Terminology and concepts..6

2.1 System Settings...6
2.2 User settings..6
2.3 App settings...6
2.4 Preferences..6
2.5 User services..6
2.6 Persistent data...6
2.7 Secondary storage...7
2.8 GSettings..7
2.9 AppArmor...7

3 Requirements..8
3.1 Access permissions..8
3.2 Writability...8
3.3 Rollback..8
3.4 Factory reset..8
3.5 Abstraction level..9
3.6 Minimising I/O bandwidth...9
3.7 Atomic updates..9
3.8 Transactional updates..9
3.9 Performance tradeoffs..9
3.10 Data size tradeoffs...10
3.11 Race conditions..10
3.12 Vendor overrides..10
3.13 Vendor lockdown..10
3.14 User interface...10
3.15 Storage of user secrets and passwords..10

4 Existing preferences systems...11
4.1 GNOME Linux desktop..11

4.1.1 Preferences..11
4.1.2 Persistent data..12

4.2 Android...12
4.2.1 Preferences..12
4.2.2 Persistent data..12

5 Approach...14
5.1 Preferences architecture..14

 Requirements...15
5.1.1 Proxied dconf backend..15

 Requirements...16
5.1.2 Development backend...16

 Requirements...17
5.1.3 Key-file backend..17

 Requirements...18

5.1.4 Security policy...18
5.1.5 User interface..18
5.1.6 Existing preferences schemas...20

5.2 Persistent data architecture...21
5.2.1 Well-known state directories...21
5.2.2 Recommended serialisation APIs...21

 GKeyFile...22
 GVDB...22
 SQLite..22
 GNOME-DB...23

5.2.3 When to save persistent data..23
5.2.4 Recently used and favourite items..23

6 Summary of recommendations...24

1 INTRODUCTION
This documents how system services and apps in Apertis may store preferences
and persistent data. It considers the security architecture for storage and access
to these data; separation of schemas, default values and user-provided values;
and guidelines for how to present preferences in the UI.

The Applications Design, and Global Search Design documents are relevant
reading. Sections 5.3.1 and 7 of the Applications Design and section 6.3 of the
Global Search Design reference the need for storage of persistent data for apps.
See section 5.2 for a design covering this.

The Robustness Design document gives more detail on the requirements for
robustness of secondary storage in the face of power loss.

2 TERMINOLOGY AND CONCEPTS

2.1 SYSTEM SETTINGS

A system setting is one which does not vary by user, and applies to the entire
system. For example, networking settings. This document considers system
settings which must be readable by multiple components — settings which are
solely for the use of a single system service are out of scope, and may be stored
in whichever way that service wishes (typically as a configuration file in /etc).
This is particularly important for sensitive settings, for example the shadow user
database in /etc/shadow, which must not be readable by anything except the
system authentication service (PAM).

2.2 USER SETTINGS

A user setting is one which does vary by user, but not by app. User settings apply
to the whole of a user's session. For example, the language or theme.

2.3 APP SETTINGS

An app setting is one which varies by user and also by app. Throughout this
document, the term ‘app’ is used to mean an app-bundle, including the UI and
any associated agent programs, analogous to an Android .apk, with a single
security domain shared between all executables in the bundle. The precise
terminology is currently under discussion, and this document will be updated to
reflect the result of that.

App settings apply only to a specific app, and would not make sense outside the
context of that app. For example, whether to enable shuffling tracks in the media
player; whether to open hyperlinks in a new tab by default in the web browser; or
the details for accessing a user's e-mail account.

2.4 PREFERENCES

'Preferences' is the general term for system, user and app settings. The terms
'preference' and 'setting' will be used interchangeably throughout this document.

2.5 USER SERVICES

A user service is as defined in the Multiuser Design document — a service that
runs on behalf of a particular user. Throughout this document, this is additionally
assumed to mean a platform user service, which is not tied to a particular app-
bundle. The alternative is an agent user service, which this document considers
part of an app-bundle, with the same access to settings as the app-UI.

2.6 PERSISTENT DATA

Persistent data is app state which persists across multiple user sessions. For
example, documents which the user has written, or the state of the user's pending
downloads.

One distinguishing factor between preferences and persistent data is that vendors
may override the default values for preferences (see section 3.12), but not for
persistent data. For example, a vendor would not want to override information
about in-progress downloads; but they might want to override the default
background image filename for a user.

The persistent data for an app may be the same as the data it shares between
user sessions, or may differ. The difference between persistent data and data for
sharing between apps is discussed in the Multiuser Design document.

Persistent data is stored on secondary storage, whereas shared data is expected
to be passed in memory — so while the sets of data are the same, the
mechanisms used to handle them are different. Persistent data is always private
to an app, and cannot be read by another app or user.

2.7 SECONDARY STORAGE

A flash disk, hard disk, or other persistent data storage medium which can be
used by the system. This term has been chosen rather than the more common
persistent storage to avoid confusion with persistent data.

2.8 GSETTINGS

GSettings1 is an interface provided by GLib for accessing settings. As an interface,
it can be backed by different storage backends — the most common is dconf, but
a key file backend is available for storage in simple key files.

GSettings uses a concept of 'schemas', which define available settings, their data
types, and their default values. Each setting is strictly typed and must have a
default value. A schema has an ID, and is 'instantiated' at one or more schema
paths. Typically, a schema will be instantiated at a single path, but may be
instantiated at multiple paths to support storing the same settings for multiple
objects — for example, a server name, username and password for multiple e-
mail accounts.

2.9 APPARMOR

AppArmor2 is an access control framework used by Apertis to enforce fine-grained
permissions across the entire system, restricting which files each process can
open.

1 https://developer.gnome.org/gio/stable/GSettings.html#GSettings.description
2 http://apparmor.net/

https://developer.gnome.org/gio/stable/GSettings.html#GSettings.description
http://apparmor.net/

3 REQUIREMENTS

3.1 ACCESS PERMISSIONS

Access controls must be enforeable on preferences. Read and write permissions
must be available. It is assumed that if a component has read permission for a
preference, it may also be notified of any changes to that preference's value. It is
assumed that if a component has write permission for a preference, it may also
reset that preference.

A suggested security policy for preferences implements a downwards flow for
reads:

• Apps may read their own app settings, user settings for the current user,
and all system settings.

• User services may read their own app settings, user settings for the
current user, and all system settings.

• System services may read their own app settings, and all system settings.

Writes are generally only allowed at the same level:

• Apps may write their own app settings.

• User services may write user settings for the current user.

• System services may write system settings for all users, user settings for
any user, and app settings for any app for any user.

Note that apps must not be able to read or write each others' settings. Similarly
for user services and system services.

Persistent data is always private to a (user, app) pair, though it can be accessed
by user services and system services.

3.2 WRITABILITY

As well as the value of a preference, components must be able to find out whether
the preference is writable. A preference may be read-only if the component
doesn't have write permission for it (section 3.1) or if it is locked down by the
vendor (section 3.13).

This does not apply to persistent data, which is always read–write by the (user,
app) pair which owns it.

3.3 ROLLBACK

As per section 4.1.5 of the Applications Design document, applications must
support rollback to a previously installed version, including restoring the user’s
settings for that application. The storage backends for the preferences and
persistence APIs must support this.

3.4 FACTORY RESET

The system must provide some means for the user to reset the state of all apps to
a factory default for a particular user, or for all users. This is necessary for
supporting removing user accounts, refreshing the car for transfer to a new
owner, or clearing the state of a temporary guest account (see the Multiuser
Design document). Similarly, it must support clearing the state of a single (user,
app) pair.

The factory reset must support resetting preferences, persistent data, or both.

3.5 ABSTRACTION LEVEL

The preferences and persistent data APIs may want to abstract the underlying
storage backend, for example to support uniform access to preferences stored in
multiple locations. If so, details of the underlying storage backend must not be
present in the abstraction (a 'leaky abstraction') — for example, SQL fragments
must not be used in the interface, as they tie the implementation to an SQL-based
backend and a specific schema.

Conversely, any more than one layer of abstraction is an unnecessary
complication.

3.6 MINIMISING I/O BANDWIDTH

As with all components which use secondary storage, the preferences and
persistent data stores should minimise the I/O load they impose on secondary
storage. This is a particular concern at system startup, where typically a lot of
data must be loaded from secondary storage, and hence I/O read efficiency is
important.

3.7 ATOMIC UPDATES

The system must make atomic writes to secondary storage, so that preferences or
persistent data are not corrupted or lost if power is lost part-way through saving
changes.

An atomic write is one where the stored state is either the old state, or the new
state, but never an intermediate between the two, and never missing entirely. In
other words, if power is lost while updating a preference, upon rebooting either
the old value of the preference must be loadable, or the new value must be
loadable.

See the Robustness Design document, §3.1.1 for more details on general
robustness requirements.

3.8 TRANSACTIONAL UPDATES

The system must allow updates to preferences to be wrapped in transactions,
such that either all of the preferences within a transaction are updated, or none of

them are. Transactions must be revertable being being applied permanently.

3.9 PERFORMANCE TRADEOFFS

Preferences are typically written infrequently and read frequently; access patterns
for persistent data depend on the app. The implementation should play to those
access patterns, for example by using locking which favours readers over writers.

3.10 DATA SIZE TRADEOFFS

It is not expected that preference values will be large — a few tens of kilobytes at
most. Conversely, persistent data may range in size from a few bytes to many
megabytes. The implementation should use a storage format suitable to the
expected data size.

3.11 RACE CONDITIONS

As system preferences may affect security policy, reading them should be race
free, particularly from time-of-check-to-time-of-use races3. For example, if a
preference is changed by process C while process R is reading it, process R must
either see the new value of the preference, or see the old value of the preference
and subsequently be notified that it has changed.

Similarly for persistent data.

3.12 VENDOR OVERRIDES

It may be desirable to support vendor overrides, where a vendor shipping Apertis
can change the default values of the (app, user or system) preferences before
shipping to the end user. For example, they may change the default background
image shown to the user.

If these are supported, resetting a preference to its default value (for example, if
doing a factory reset, section 3.4) must restore it to the vendor-supplied default,
rather than the Apertis default. There is no need to be able to access the Apertis
default at any time.

This does not apply to persistent data.

3.13 VENDOR LOCKDOWN

It may also be desirable to support vendor lockdowns, where a vendor shipping
Apertis can lock a preference so that end users may not change it. For example,
they may wish to lock the URI which is checked for system updates.

This does not apply to persistent data.

3 http://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

http://en.wikipedia.org/wiki/Time_of_check_to_time_of_use

3.14 USER INTERFACE

There must be some user interface (UI) for setting preferences. This may be
provided by a special preferences app, or as a separate window in each app, or a
combination of the two.

This does not apply to persistent data.

3.15 STORAGE OF USER SECRETS AND PASSWORDS

There must be a secure way to store user secrets and passwords, which preserves
confidentiality of these data. This may be separate from the main preferences or
persistent data stores.

4 EXISTING PREFERENCES SYSTEMS
This chapter describes the conceptual model, user experience and design
elements used in various non-Apertis operating systems' support for preferences
and persistent data, because it might be useful input for decision-making. Where
available, it also provides some details of the implementations of features that
seem particularly interesting or relevant.

4.1 GNOME LINUX DESKTOP

4.1.1 PREFERENCES

On a modern GNOME desktop, from which Apertis uses a lot of components,
settings are stored in multiple places.

• System settings: Stored in /etc by each system service, typically in a text
file with a service-specific format. A lot of them have a system-wide default
value, and may be overridden per user (for example, each user can set their
own timezone and locale, with a system-wide default).

• User settings: Defined by shared GSettings schemas (such as
org.gnome.system.locale), or schemas specific to individual user services
(such as org.freedesktop.Tracker). The values are stored in dconf (see
below).

• App settings: Defined by app-specific GSettings schemas. The values are
stored in dconf (see below).

dconf supports multiple layered databases4, each stored separately. For each
settings key, a value set for it in one layer overrides any values set in the layers
below. The bottom (read-only) layer is always the set of default values which are
provided by the schema file. This layered approach allows the system
administrator to change settings system-wide in a system database, but also
allows users to override those settings in their per-user database. It allows a user
to reset all their settings by deleting their per-user database — at which point, the
values from the next layer down (typically either a system database or the
defaults from schema files) will be used for all settings keys.

Lockdown5 is supported in dconf in the opposite direction: keys may be locked
down at a particular level, and may not be set at levels above that one (but may
be set at levels below it, as defaults).

Architecturally, dconf allows direct read-only access to all databases — each app
reads settings values directly from the database. Writes to the databases are
arbitrated through a per-user dconf daemon which then forces each app to refresh
its read-only view of the settings. This allows for fast concurrent reads of settings,
at the cost of making writes expensive.

dconf does not support access controls, and does not support storing different

4 https://developer.gnome.org/dconf/unstable/dconf-overview.html
5 https://developer.gnome.org/dconf/unstable/dconf-overview.html#id-1.2.7

https://developer.gnome.org/dconf/unstable/dconf-overview.html#id-1.2.7
https://developer.gnome.org/dconf/unstable/dconf-overview.html

schemas in different databases at the same layer. Hence a user either has write
access to the whole of a system database, or write access to none of it. As the
dconf daemon runs per user, any app accessing the daemon may write to any
settings key, either its own app settings, another app's settings, or the user's
settings.

4.1.2 PERSISTENT DATA

Persistent data is stored in application-defined formats, in application-defined
locations, although many follow the XDG Base Directory Specification6, which puts
cache data in XDG_CACHE_HOME (typically ~/.cache) and non-cache data in
XDG_DATA_HOME (typically ~/.local/share). Below these two directories,
applications create their own directories or files as they see fit. There is no
security separation between applications, but the normal UNIX permissions
restrict access to only the current user.

4.2 ANDROID

4.2.1 PREFERENCES

Apps can use the SharedPreferences class7 to read and write preferences from
named preferences files, with apps typically using a single preferences file with a
default name. These files are stored per-app, and are private to that app by
default, but may be shared with other apps, either read-only or read–write.

Preferences are strongly typed, and default values are provided by the app at
runtime. There is no concept of layering or of schemas — all definition of the
preferences files is handled at runtime.

Preferences are saved to disk immediately.

Android uses a custom XML format8 to allow apps to define preference UIs (known
as ‘activities’ in Android terminology). This format can define simple lists of
preferences, through to complex UIs with grouped preferences, subscreens, lists
of subscreens, and custom preference widgets. Implementing features such as
making one preference conditional on another is possible, but requires complex
XML.

4.2.2 PERSISTENT DATA

Android offers several options for persistent data9:

• Internal storage: Files in a per-(user, app) directory, which may optionally
be made world-readable or writable to allow access to other apps or users
(though this is strongly discouraged).

• External storage: Files in a world-readable storage area which is

6 http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
7 http://developer.android.com/guide/topics/data/data-storage.html#pref
8 http://developer.android.com/guide/topics/ui/settings.html#DefiningPrefs
9 http://developer.android.com/guide/topics/data/data-storage.html

http://developer.android.com/guide/topics/data/data-storage.html
http://developer.android.com/guide/topics/ui/settings.html#DefiningPrefs
http://developer.android.com/guide/topics/data/data-storage.html#pref
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

accessible to the user, such as an SD card. Accessible to all other apps and
users which hold the READ_EXTERNAL_STORAGE or WRITE_EXTERNAL_STORAGE
permissions.

• SQLite database: Arbitrary app-defined tables in a per-(user, app) SQLite
database. This may not be shared with other apps or users.

• Network connection: Using the normal networking APIs, Android suggests
that data can be stored on servers controlled by the app developers. It
provides no special API for this.

5 APPROACH
Preferences and persistent data have largely separate requirements: preferences
are small amounts of data; need to be accessed by multiple components; will
typically be read much more frequently than they are written; and need to
support features like vendor overrides (section 3.12) and vendor lockdown
(section 3.13). Persistent data may vary from small to large amounts of data; will
be read and written frequently; in app-specific formats; and do not need to be
accessed by other components.

The expected amount of data to be stored, and the relative frequency of reads
and writes of that data, is an important factor in the choice of storage format to
use. Preferences should be stored in a format which is optimised for reads;
persistent data should be stored in a format which is optimised for frequent reads
and writes, since apps should update it frequently as they may be killed at any
time.

For these reasons, we suggest preferences and persistent data are handled
entirely separately. The following sections will cover them separately, giving our
recommended approach and justifications which refer back to the requirements
(section 3).

User secrets and passwords (section 3.15) have different requirements again —
the requirement of confidentiality in storage. As the system explicitly does not
support full-disk encryption (for performance reasons), user secrets and
passwords should be stored via the freedesktop.org Secrets D-Bus API10, rather
than the preferences or persistence APIs. Accordingly, confidential data will not be
considered in the approach below.

5.1 PREFERENCES ARCHITECTURE

Access to app, user and system settings should be through the GSettings API,
most likely backed by dconf. (Refer to section 4.1 for an overview of the way
GSettings and dconf fit together.) As system settings are defined as those settings
which are accessed by multiple components, settings which are solely for the use
of a single system service may be stored in other ways, and are beyond the scope
of this document.

Each component should have its own GSettings schema:

• App schemas: In the form net.example.MyApplication.SchemaName.
Each app may have zero or more schemas, but all must be prefixed by the
app ID (in this case, net.example.MyApplication; see the Applications
Design document for details on the application ID scheme) to provide a level
of namespacing.

• User schemas: These may have any form, and will typically re-use existing
cross-desktop schemas, such as org.gnome.system.locale, as these are
supported by many existing software components used by Apertis.

10http://standards.freedesktop.org/secret-service/

http://standards.freedesktop.org/secret-service/

• System schemas: These may have any form, similarly.

Schema files for apps should be packaged with their app. For user services, they
could be packaged with the most relevant service, or in a general purpose
gsettings-desktop-schemas package (adapted from Debian) and an
accompanying apertis-schemas package for Apertis-specific schemas.

All reads and writes of all settings should go through the normal GSettings
interface — leaving access controls and policy to be implemented in the backend.
App code therefore does not need to treat reads and writes differently, or treat
app, user and system settings differently.

The use of GSettings also means that a single schema may be instantiated at
multiple schema paths. Typically, a schema will only be instantiated at the path
matching its ID; but a relocatable schema may be instantiated at other paths. This
can be used to store settings for multiple accounts, for example.

It is expected that each app will handle any upgrades to its preference schemas,
for example from one major version of the app to the next. Apertis will not provide
any special APIs for this. As this is highly dependent on the structure of the
preference keys an app is storing, Apertis can provide no recommendations here.

Requirements

Through the use of the GSettings API, the following requirements are
automatically fulfilled:

• 3.2: Writability — using g_settings_is_writable()

• 3.4: Factory reset — for individual keys, using g_settings_reset(); support
for resetting entire schemas needs to be supported by the designs below

• 3.5: Abstraction level — GSettings serves as the abstraction layer, with the
individual backends below adding no further abstractions

• 3.8: Transactional updates — GSettings provides g_settings_delay(),
g_settings_apply() and g_settings_revert() to implement in-memory
transactions which are serialised in the backend on calling apply

• 3.11: Race conditions — g_settings_get() automatically returns the
default value if no user-set value exists; there is no atomic API for setting
settings

• 3.14: User interface — g_settings_bind() can be used to bind a GSettings
key to a particular UI widget, allowing interface UIs to be built easily (noting
the argument in section 5.1.5 that preferences UIs should not be
automatically generated)

5.1.1 PROXIED DCONF BACKEND

In its current state (May 2015, detailed in section 4.1), dconf does not support the
necessary fine-grained access controls for multiple components accessing the
preferences. However, a design is being implemented upstream to proxy access
to dconf through a separate service which imposes access controls based on

AppArmor (intended to be ready by the end of May 2015).

On the assumption that this work can be completed and integrated into Apertis on
an appropriate timescale, this leads to a design where the dconf daemon runs as
a system service, storing all settings in one database file per default layer:

• App database:
/Applications/net.example.MyApplication/username/config/dconf/ap
p

• User database: ~/.config/dconf/user

• System database: /etc/dconf/db/local

This would be implemented as the dconf profile:

user-db:user
file-db:/Applications/net.example.MyApplication/username/config/dconf/app
system-db:local

All accesses to dconf would go through GSettings, and then through the proxy
service which applies AppArmor rules to restrict access to specific settings,
implementing the chosen security policy (section 3.1). The rules may, for
example, match against settings path and the AppArmor label of the calling
process.

The proxy service would therefore implement a system preferences service.

Vendor lockdown (section 3.13) is supported already by dconf11 through the use of
lockdown files, which specify particular keys or settings sub-trees which may not
be modified.

Rollback (section 3.3) is supported by having one database file per (user, app)
pair, which can be snapshotted and rolled back using the normal app snapshot
mechanism described in the Applications Design. dconf will detect the rollback of
the database and reload it.

Resetting all system settings would be a matter of deleting the appropriate
databases — the keys in that database will revert to the default values provided
by the schema files. As this is a simple operation, it does not have to be
implemented centrally by a preferences service. Resetting the value of an
individual key is supported by the g_settings_reset() API, which is already
implemented as part of GSettings.

The existing Apertis system puts

#include <abstractions/gsettings>

in several of the AppArmor profiles, which gives unrestricted access to the user
dconf database. This must change with the new system, only allowing the dconf
daemon access to the database.

11https://developer.gnome.org/dconf/unstable/dconf-overview.html#id-1.2.7

https://developer.gnome.org/dconf/unstable/dconf-overview.html#id-1.2.7

Requirements

This design fulfills the following requirements:

• 3.1: Access permissions — through use of the proxy service and AppArmor
rules

• 3.3: Rollback — by rolling back the user’s per-app database

• 3.4: Factory reset — by deleting the user’s database or the user’s per-app
database

• 3.6: Minimising I/O bandwidth — dconf’s database design is optimised for
this

• 3.7: Atomic updates — dconf performs atomic overwrites of the database

• 3.9: Performance tradeoffs — dconf is heavily optimised for reads rather
than writes

• 3.10: Data size tradeoffs — dconf uses GVDB for storage, so can handle
small to large amounts of data

• 3.12: Vendor overrides — dconf supports vendor overrides inherently

• 3.13: Vendor lockdown — dconf supports vendor lockdown inherently

5.1.2 DEVELOPMENT BACKEND

In the interim, we recommend that the standard dconf backend be used to store
all system, user and app settings. This will not allow for access controls to be
applied to the settings (requirement 3.1), but will allow for app development
against the final GSettings interface.

Once the proxied dconf backend is ready, it can be packaged and the system
configuration changed — no changes should be necessary in user services or apps
to make use of the changed backend.

This development backend would support vendor lockdown as normal. It would
support resetting all settings at once, but would not support resetting an
individual app’s settings (or rolling them back) independently of other apps, as all
settings are stored in the same dconf database file.

Requirements

This design fails the following requirements:

• 3.1: Access permissions — unsupported by the current version of dconf

• 3.3: Rollback — unsupported by the current version of dconf

It supports the following requirements:

• 3.4: Factory reset — partially supported by deleting the user’s database;
resetting a (user, app) pair is not supported as all settings are stored in the
same dconf database file

• 3.6: Minimising I/O bandwidth — dconf’s database design is optimised for
this

• 3.7: Atomic updates — dconf performs atomic overwrites of the database

• 3.9: Performance tradeoffs — dconf is heavily optimised for reads rather
than writes

• 3.10: Data size tradeoffs — dconf uses GVDB for storage, so can handle
small to large amounts of data

• 3.12: Vendor overrides — dconf supports vendor overrides inherently

• 3.13: Vendor lockdown — dconf supports vendor lockdown inherently

5.1.3 KEY-FILE BACKEND

As an alternative, if it is felt that the development backend is too simplistic to use
in the interim before the proxied dconf backend is ready, the GSettings key-file
backend could be used. This would allow enforcement of access controls via
AppArmor, at the cost of:

• lower read performance due to not being optimised for reads (or in general);

• requiring code changes in user services and apps to switch from the key-file
backend to the proxied dconf backend once it's ready;

• requiring settings values to be migrated from the key-file store to dconf at
the time of switch over;

• not supporting vendor lockdown or vendor overrides.

Due to the need for code changes to switch away from this backend to a more
suitable long-term solution such as the proxied dconf backend, we do not
recommend this approach.

In detail, the approach would be to use a separate key file for each schema
instance, across all system services, user services and apps. This would require
using g_settings_key_file_backend_new() and
g_settings_new_with_backend_and_path() to manually construct the GSettings
instance for each schema, using a key file path which corresponds to the schema
path.

Access control for each schema instance would be enforced using AppArmor rules
which restrict access to each key file as appropriate. For example, apps would be
given read-only access to the key files for system and user settings, and read–
write access to the key file for their own app settings.

Vendor lockdown would be supported by vendors patching the AppArmor files to
limit write access to specific schema instances. It would not support per-key
lockdown at the granularity supported by dconf.

This code for creating the GSettings object could be abstracted away by a helper
library, but the API for that library would have to be stable and supported
indefinitely, even after changing the backend.

Requirements

This design fails the following requirements:

• 3.9: Performance tradeoffs — GKeyFile is equally non-optimised for reads
and writes

• 3.12: Vendor overrides — unsupported by GKeyFile

• 3.13: Vendor lockdown — unsupported by GKeyFile

It supports the following requirements:

• 3.1: Access permissions — supported by AppArmor rules on the per-schema
key files

• 3.3: Rollback — by snapshotting and rolling back the appropriate key files

• 3.4: Factory reset — by deleting the appropriate key files

• 3.6: Minimising I/O bandwidth — GKeyFile’s I/O bandwidth is proportional to
the number of times each key file is loaded and saved

• 3.7: Atomic updates — GKeyFile performs atomic overwrites of the database

• 3.10: Data size tradeoffs — GKeyFile’s load and save performance is
proportional to the amount of data stored in the file, so it is suitable for
small amounts of data

5.1.4 SECURITY POLICY

All three potential backends enforce security policy through per-app AppArmor
rules (if they support implementing security policy at all — the development
backend, section 5.1.2, does not).

It is beyond the scope of this document to define how each app ships its
AppArmor rules, and how Apertis can guarantee that third-party apps cannot
grant themselves higher privileges using additional rules. The suggestion in
section 8.3 of the Applications Design document is for the AppArmor rule set for
an app to be automatically generated from the app’s manifest file by the app
store (which is trusted). The manifest file could contain permissions such as ‘can-
change-locale’ or ‘can-add-network’ which would translate to AppArmor rules
allowing an app write access to the relevant user and system settings.

Additionally, by generating AppArmor rules from an app’s manifest, the precise
format of the AppArmor rules is abstracted, allowing the preferences backend to
be switched in future (just as app access to preferences is abstracted through
GSettings).

5.1.5 USER INTERFACE

We recommend that each app implement its own preferences interface, as a
separate window in the app, or in some other manner in the app its UI designers
feel is appropriate.

This preferences UI should be launchable via an action which is triggered by the

ActivateAction method of the org.freedesktop.Application D-Bus interface12
When triggered, this action launches the app with the preferences UI shown, or
brings the preferences UI to the foreground if the app is already running. This
gives a method for a system preferences app to list installed apps and launch
their preferences centrally, if desired. If an app supports this action, it must set a
supports-show-preferences flag in its manifest, so that the system preferences
app knows which apps to list.

The system preferences app should present system and user preferences which
are not specific to any app — for example, language or background settings. It
would be a separate app binary, pre-installed, and with security policy allowing it
to set user and system settings. Use of the system preferences app may be
restricted to administrative users (for example, the car's owner) — the policy
about which users may run the system preferences app is beyond the scope of
this document, which assumes that if the system preferences app is running, it
may modify system and user settings.

All preferences UIs should be designed manually, and must not be automatically
generated from the GSettings schema files. To do so is tempting, and can rapidly
produce rough drafts of preferences UIs, but in our experience can never result in
a high-quality finished UI with:

• logically grouped options;

• correctly aligned controls;

• a concept of which preferences are most important, which ones are
‘advanced’, and which ones should be hidden;

• conditional defaults (for example, when you set up IMAP e-mail, the default
port should be 143, except if you have selected old-style SSL in which case
it should be 993); and

• the ability to hide or disable preferences that do not apply because of the
value of another preference (for example, if you switch off Bluetooth
completely, then the widget to change the name that is broadcast over
Bluetooth should be hidden or disabled).

If the uniform appearance of preferences UIs is a concern, this should be
addressed through convention, the default appearance of widgets in the UI toolkit,
and the use of a set of human interface guidelines such as the GNOME HIG13.
Specifically, we recommend that preferences are:

• integrated into the main application UI if there are only a small number of
them;

• instant-apply unless doing so would be dangerous, in which case they
should be explicit-apply for all preferences in the dialogue (for example,
changing monitor resolutions is dangerous, and hence is explicit-apply); and

• grouped logically in the UI.

12http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#dbus
13https://wiki.gnome.org/Design/HIG/PreferencesWindows, though this page is currently under

development.

https://wiki.gnome.org/Design/HIG/PreferencesWindows
http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#dbus

If, after the preferences UIs of several applications have been implemented, some
common widget patterns have been identified, we suggest that they could be
abstracted out into new widgets in the UI toolkit. The goal of this would be to
increase consistency between preferences UIs, without implementing essentially a
separate UI toolkit for them, which would be the result of any template- or auto-
generation-based approach.

Alternative model, not recommended: Preferences for individual apps could
instead be presented together in the system preferences app. This is not
recommended, as it increases complexity (there would need to be some way of
embedding the UI from the app in the system preferences app, similar to Android
Preference Fragments14), decreases flexibility for app authors to present
preferences as best suits the app, and moves the preferences away from the app
to somewhere the user may not immediately look for them.

5.1.6 EXISTING PREFERENCES SCHEMAS

As GSettings is used widely within the open source software components used by
Apertis, particularly GNOME, there are many standard GSettings schemas for
common user settings. We recommend that Apertis re-use these schemas as
much as possible, as support for them has already been implemented in various
components. If that is not possible, they could be studied to ensure we learn from
their design successes or failures.

• org.gnome.system.locale

• org.gnome.system.proxy

• org.gnome.desktop.default-applications

• org.gnome.desktop.media-handling

• org.gnome.desktop.interface

• org.gnome.desktop.lockdown

• org.gnome.desktop.background

• org.gnome.desktop.notifications

• org.gnome.crypto

• org.gnome.desktop.privacy

• org.gnome.system.dns_sd

• org.gnome.desktop.sound

• org.gnome.desktop.datetime

• org.gnome.system.location

• org.gnome.desktop.thumbnailers

• org.gnome.desktop.thumbnail-cache

14http://developer.android.com/guide/topics/ui/settings.html#Fragment

http://developer.android.com/guide/topics/ui/settings.html#Fragment

• org.gnome.desktop.file-sharing

Various Apertis dependencies (for example, Mutter, Tracker, libfolks, IBus,
Geoclue, Telepathy) use their own GSettings schemas already — as these are not
shared, they are not listed.

Alternative model: If the locale is a system setting, rather than a user setting,
systemd's localed15 should be used. This would require the locale to be changed
via the localed D-Bus API, rather than GSettings, which would affect the
implementation of the system preferences app.

5.2 PERSISTENT DATA ARCHITECTURE

As discussed in sections 5.3.1 and 7 of the Applications Design, and the Multiuser
Design, there is a difference between state which an app needs to persist (for
example, if it is being terminated to switch users), and state which an app
explicitly needs to share (for example, if a transactional user switch is taking
place to execute an action as a different user). The Multiuser Design encourages
app authors to think explicitly about these two sets of state, and the differences
between them. It is the app which chooses the state to persist, rather than the
operating system — storage space is too limited to persist the entire address
space of an app, effectively suspending it.

The state each app chooses to persist will differ, and cannot be predicted by
Apertis. There could be a lot of state, or very little. It could be representable as a
simple key–value dictionary, or might have a complex hierarchical structure.

5.2.1 WELL-KNOWN STATE DIRECTORIES

As mentioned in the Applications Design document (sections 5.3.1 and 7), we
recommend that Apertis provide a per-(user, app) directory for storage of
persisted data, and a public API the app can call to find out that directory. The API
should differentiate between cache and non-cache state, with cache state going in
$XDG_CACHE_HOME/net.example.MyApp/ and non-cache state going in
$XDG_DATA_HOME/net.example.MyApp/. Alternatively, as suggested in the
Applications Design, the latter could be
/Applications/net.example.MyApp/Storage/username/state/. This has the
advantage of allowing all data for a particular app to be removed by deleting
/Applications/net.example.MyApp, at the cost of not following the XDG
standard used by most existing software. This fulfils the factory reset requirement
(3.4).

The former is effectively equivalent to a per-(user, app) XDG_CACHE_HOME
directory, and the latter to a XDG_DATA_HOME, as defined by the XDG Base
Directory Specification16.

AppArmor rules should exist to allow apps to write to these directories (and not to
other apps’ state directories). This is the extent of the security needed, as state

15http://www.freedesktop.org/wiki/Software/systemd/localed/
16http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://www.freedesktop.org/wiki/Software/systemd/localed/

storage is simply an interaction between an app and the filesystem.

This approach automatically allows for rollback of persistent data (requirement
3.3) using the normal snapshotting mechanism described in the Applications
Design document.

5.2.2 RECOMMENDED SERIALISATION APIS

As each app’s state storage requirements are different, we suggest that Apertis
provide several recommended serialisation APIs, and allow apps to choose the
most appropriate one — or something completely different if that fulfills their
requirements better.

Alongside, Apertis should provide guidelines to app developers to allow them to
choose an appropriate serialisation API, and avoid common problems in
serialisation:

• minimise writes to secondary storage (requirement 3.6);

• ensure all updates to stored state are atomic17 (requirement 3.7); and

• ensure transactions are used for groups of updates where appropriate
(requirement 3.8).

Depending on the requirements it is believed that apps will have, some or all of
the following APIs could be recommended for serialising state to secondary
storage. For comparison, Android only provides a generic file storage API, and an
SQLite API, with no implemented key–value store APIs18. Apps must implement
those themselves.

GKeyFile

https://developer.gnome.org/glib/stable/glib-Key-value-file-parser.html

Suitable for small amounts of key–value state with simple types. Suitable for small
amounts of data.

All updates to a GKeyFile are atomic, as it uses the atomic-overwrite technique:
the new file contents are written to a temporary file, which is then atomically
renamed over the top of the old file. Transactional updates can be implemented
by saving the key file to apply the transaction, and discarding the in-memory
GKeyFile object to revert it.

The amount of I/O with a GKeyFile is small, as the amount of data which should be
stored in a GKeyFile is small, and the file is only written out when explicitly
requested by the app.

GVDB

https://git.gnome.org/browse/gvdb

17Atomic in the sense that either the old or new states are stored in entirety, rather than some
intermediate state, if power is lost part-way through an update.

18http://developer.android.com/guide/topics/data/data-storage.html

https://git.gnome.org/browse/gvdb
https://developer.gnome.org/glib/stable/glib-Key-value-file-parser.html
http://developer.android.com/guide/topics/data/data-storage.html#filesInternal

Memory-mapped hash table with GVariant-style19 types, suitable for small to large
amounts of data which are read much more frequently than they are written. This
is what dconf uses for storage.

All updates to a GVDB file are atomic, as it uses the same atomic-overwrite
technique as GKeyFile (above). Transactions are supported similarly — by writing
out the updated database or discarding it.

The amount of I/O for reads from a GVDB file is small, as it memory-maps the
database, so only pages in the data it actually reads (plus some metadata). Writes
require the entire file to be updated, but are only done when explicitly requested
by the app.

SQLite

http://sqlite.org/

Full SQL database implementation, supporting simple SQL types and more
complex relational types if implemented manually by the app. Suitable for
medium to large amounts of data which are read and written frequently. It
supports SQL transactions.

SQLite is not a panacea. It is designed for the specific use pattern of SQL
databases with indexes and relational tables, with frequent reads and writes, and
infrequent deletions of data. Apps will only get the best performance from SQLite
by defining their own table structure, indices and relations; imposing a common
key–value-style API on top of SQLite would give lower performance.

Apps should only use SQLite if they have considered issues like their vacuuming
policy — how frequently to vacuum the database after deleting data from it. See:

• https://blogs.gnome.org/jnelson/2015/01/06/sqlite-vacuum-and-
auto_vacuum/

• https://wiki.mozilla.org/Performance/Avoid_SQLite_In_Your_Next_Firefox_Feat
ure

GNOME-DB

http://www.gnome-db.org/

This is not recommended. It is an abstraction layer over multiple SQL database
implementations, allowing apps to access remote SQL databases. In almost all
cases, directly using SQLite (above) is a more appropriate choice.

5.2.3 WHEN TO SAVE PERSISTENT DATA

As specified in the Applications Design (section 5.3.1), state is saved to secondary
storage at times chosen by both the operating system and the app. The operating
system knows when the logged in user is about to change, or when the system is
about to be shut down; the app knows when it has changed some of its persistent
state in memory, and hence needs to write it out to secondary storage.

19https://developer.gnome.org/glib/stable/glib-GVariant.html

http://www.gnome-db.org/
https://wiki.mozilla.org/Performance/Avoid_SQLite_In_Your_Next_Firefox_Feature
https://wiki.mozilla.org/Performance/Avoid_SQLite_In_Your_Next_Firefox_Feature
https://blogs.gnome.org/jnelson/2015/01/06/sqlite-vacuum-and-auto_vacuum/
https://blogs.gnome.org/jnelson/2015/01/06/sqlite-vacuum-and-auto_vacuum/
http://sqlite.org/
https://developer.gnome.org/glib/stable/glib-GVariant.html

An action could be implemented in each app which is triggered by the
ActivateAction method of the org.freedesktop.Application D-Bus interface20
if, for example, that interface is implemented by apps. When triggered, this action
would cause the app to store its persistent state.

5.2.4 RECENTLY USED AND FAVOURITE ITEMS

Section 6.3 of the Global Search Design specifies that an API for apps to store
their favourite and recently used items in will be provided. As this is data shared
from an app to the operating system, and is typically append-only rather than
strongly read–write, Collabora recommends that it be designed separately from
the persistent data API covered in this document, following the recommendations
given in the Global Search Design document.

20http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#dbus

http://standards.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#dbus

6 SUMMARY OF RECOMMENDATIONS
As discussed in the above sections, Collabora recommends:

• Splitting preferences, persistent data storage and confidential data storage
(section 5).

• Providing one API for preferences: GSettings (section 5.1).

• Apps provide a GSettings schema file for their preferences, named after the
app (section 5.1).

• Existing GSettings schemas are re-used where possible for user and system
settings (section 5.1.6).

• Developing against the normal dconf backend for GSettings (section 5.1.2).

• Switching to the proxied dconf backend once it’s ready, to support access
control (section 5.1.1).

• A key-file backend is an alternative Collabora does not recommend (section
5.1.3).

• Permissions to modify user or system settings are controlled by the app’s
manifest (section 5.1.4).

• Permissions are converted to backend-specific AppArmor rules by the app
store (section 5.1.4).

• User interfaces for preferences are designed manually (section 5.1.5).

• Each app implements its preferences UI in its main binary, and provides a
GApplication action to show it (section 5.1.5).

• Providing API to get a persistent data storage location (section 5.2.1).

• Persistent data is private to each (user, app) pair (section 5.2.1).

• Recommending various different data storage APIs to suit different apps’
use cases (section 5.2.2).

• Apps explicitly define which data will persist, and are responsible for saving
it (section 5.2).

• Apps can be instructed to save their persistent state by the operating
system via a D-Bus interface (section 5.2.3).

• User secrets and passwords are stored using the freedesktop.org Secrets D-
Bus API, not the Apertis preferences or persistence APIs (section 5).

	Document Change Log
	1 Introduction
	2 Terminology and concepts
	2.1 System Settings
	2.2 User settings
	2.3 App settings
	2.4 Preferences
	2.5 User services
	2.6 Persistent data
	2.7 Secondary storage
	2.8 GSettings
	2.9 AppArmor

	3 Requirements
	3.1 Access permissions
	3.2 Writability
	3.3 Rollback
	3.4 Factory reset
	3.5 Abstraction level
	3.6 Minimising I/O bandwidth
	3.7 Atomic updates
	3.8 Transactional updates
	3.9 Performance tradeoffs
	3.10 Data size tradeoffs
	3.11 Race conditions
	3.12 Vendor overrides
	3.13 Vendor lockdown
	3.14 User interface
	3.15 Storage of user secrets and passwords

	4 Existing preferences systems
	4.1 GNOME Linux desktop
	4.1.1 Preferences
	4.1.2 Persistent data

	4.2 Android
	4.2.1 Preferences
	4.2.2 Persistent data

	5 Approach
	5.1 Preferences architecture
	Requirements
	5.1.1 Proxied dconf backend
	Requirements

	5.1.2 Development backend
	Requirements

	5.1.3 Key-file backend
	Requirements

	5.1.4 Security policy
	5.1.5 User interface
	5.1.6 Existing preferences schemas

	5.2 Persistent data architecture
	5.2.1 Well-known state directories
	5.2.2 Recommended serialisation APIs
	GKeyFile
	GVDB
	SQLite
	GNOME-DB

	5.2.3 When to save persistent data
	5.2.4 Recently used and favourite items

	6 Summary of recommendations

