
Release flow and product lines

Contents1

Debian release processes 32

Process towards a release . 43

Process after release . 54

Stable repository . 55

Security repository . 56

Stable Proposed Updates repository 67

Stable Updates repository . 68

Backports repository . 69

Debian release flow conclusions . 610

Linux kernel release flow 711

Process towards a release . 712

Process after a release . 813

Linux release flow conclusions . 814

Apertis release flow 815

Flow up to a product release . 1016

Development releases (Q4, Q1, Q2, Q3) 1117

Preview release (Q4) . 1118

Product release (Q1) . 1119

Process after a product release . 1220

Stable Repository . 1221

Security repository . 1322

Updates repository . 1323

Backports repository . 1324

Dependencies between these repositories 1425

Example images . 1426

Apertis release flow conclusions . 1427

Release flow for the direct downstreams of Apertis 1528

Guidelines for product development on top of Apertis and its di-29

rect downstreams 1630

Pre-production guidelines . 1631

Post-production support guidelines . 1732

Product guideline conclusions . 1833

Appendix: Change in release strategy 1934

Appendix: Distribution “freshness” 1935

Appendix: Frequently Asked Questions 2036

What is the effort required to move to a new product release? 2037

How often security fixes are made available to users? 2038

Do packages get updated in a published development/preview release? 2139

2

Do downstream distributions need to perform a folding? 2140

Do downstream distributions need to perform a branching? 2241

Apertis and its direct downstreams are intended as baseline distributions for42

further product development, as such it’s important to have a clear definition of43

what downstreams further down the chain can expect in terms of releases and44

support cycles in order to understand how to best use them in their product45

development cycles.46

The release cycles of Apertis and its direct downstreams are split up in two big47

phases: a development phase, containing various development releases followed48

by a product phase which contains various stable point releases. As it is typical,49

the development phase is where new features are introduced and prepared, with50

each development release having only a relatively short support time, while51

during the product phase the focus is on stability, which comes with a longer52

support cycle, no new feature and only updates for important bugfixes and53

security issues.54

This document sets out to define a well-defined process for both the development55

and production phases of Apertis and its direct downstreams, while ensuring the56

software taken from upstreams is recent and well-supported. More specifically57

this process is trying to balance various trade-offs when integrating from com-58

munity supported upstreams:59

• support baseline versions that also have community support (to prevent60

the situation where, for instance, Apertis would need to provide full secu-61

rity support for the base distribution and/or the Linux kernel);62

• ensure there is a reasonable window for users of Apertis and its direct63

downstreams to rebase on top of a new on version while the older baseline64

is still supported;65

• limit the amount of simultaneously supported releases to minimize the66

overall effort.67

In all cases it should be noted that support timelines documented here are the68

expected default timelines: given enough interest particular support cycles can69

be extended to fit the needs of downstreams.70

For the Apertis releases there are two important upstream projects that need to71

be taken into account: the Debian project, which is the main upstream distri-72

bution for Apertis, and the mainline Linux kernel. These will be further looked73

at first, including the impact of their release process on generic downstreams74

before looking at Apertis specifically.75

Debian release processes76

Debian aims to do a new major release about every two years. These releases are77

not time-based, but done when “ready”(defined as having no more issues tagged78

3

“release-critical”). Even so, the process is well understood and predictable. For79

more information see the Debian release statistics180

For a downstream there are two important processes to understand. The first81

one to understand is the process towards a release which impacts when down-82

stream rebasing should start. The second one being the maintenance process83

of a stable release, which impacts how to handle security and bugfixes coming84

from Debian to the downstream.85

A new stable Debian release is done roughly every two years. Each release gets86

3 years of support before it is taken over by the LTS team which provides other87

two years of security support before a release enters end of life (EOL). The88

following diagram shows the expected timeline for the current Debian release89

and the upcoming releases:90

Freeze
start

Release LTS EOL
Debian 11
"Bullseye"

Freeze
start

Release LTS EOL
Debian 12
"Bookworm"

Freeze
start

Release LTS
Debian 13
"Trixie"

Jul.
2021

June
2023

~June
2025

Feb.
2023

~Jan.
2025

Feb.
2021

~June
2026

~June
2028

Freeze
start

Release

Debian 14
"Forky"

~June
2027

~Jan.
202791

Process towards a release92

Debian’s development is done in a suite called unstable (code-named sid). De-93

velopers directly upload packages into this suite. Once updated, packages stay94

in the unstable suite for some time (typically 10 days) and then they automati-95

cally get promoted to the testing suite as long as no release-critical bugs were96

found (and no other sanity check failed). The testing suite has the code-name97

of the next planned Debian release, at the time of this writing this is bookworm.98

The idea behind the unstable to testing progression is to ensure that during99

Debian development there is a version available that is shielded from the most100

serious regressions and can thus be used by a wider audience for testing and101

dogfooding. However among Debian developers it is common to directly run102

unstable on a day to day basis.103

To go from the “normal”development to a new release a freeze process is used.104

Specifically the testing suite is frozen in various stages:105

• transition freeze: no updates that need a collection of packages to transi-106

tion into testing at once are allowed (e.g. due to ABI breakage);107

• soft freeze: no new packages are allowed into testing anymore;108

1https://wiki.debian.org/DebianReleases#Release_statistics

4

https://wiki.debian.org/DebianReleases#Release_statistics
https://wiki.debian.org/DebianReleases#Release_statistics

• full freeze: only updates for release critical issues are allowed.109

Typically this process takes around 7 months (plus/minus two months) to com-110

plete, with the transition freeze and soft freeze each taking about 1 month while111

the full freeze takes the remainder of the time. Even with the testing suite being112

held in a pretty stable state the final freeze takes this amount of time due to113

the sheer size of Debian, due to the big increase in user testing once the freeze114

begins and due to all the work that needs to be completed before release, such115

as finalising the documentation, installers, etc. The end-result is a new stable116

release of a very high-quality Linux distribution.117

Once a release is done the stable suite is updated to refer to the new release,118

while testing is changed to refer to the next version (to be code-named bookworm119

at the time of writing).120

From the perspective of a downstream distribution such as Apertis it is impor-121

tant to note that even if during the Debian freeze there will be some amount of122

outstanding release-critical bugs, only a subset of them will impact the down-123

streams use-case. As such, if scheduling allows, it is recommended to start124

rebasing on top of a next Debian stable release while Debian itself is in either125

soft or hard freeze. This has the added benefit that the downstream distribution126

will already pre-test the upcoming Debian release, with the potential of being127

able to fix high-priority issues in Debian proper even before its release, thus128

lowering the delta maintained in the downstream distribution.129

Process after release130

Once a release has been done, the newly released distribution will follow Debian’131

s stable processes. Debian tends to do point release once every two months to132

include fixes for the latest security issues and high priority bugs. This process133

is handled through various different package repositories.134

Stable repository135

This is the main repository with the full current released version of Debian.136

After release this repository only gets updated when a point releases happens.137

Security repository138

This repository contains security updates on top of the current point release.139

The security repositories are managed by the Debian Security team, using their140

own dedicated infrastructure.141

As can be expected, security updates are meant to be deployed by users as soon142

as possible.143

5

Stable Proposed Updates repository144

This repository is meant for proposed updates to the next point release. The145

purpose of this repository is to have a way of testing updates before they are146

included into the next point release.147

Only packages with issues tagged release-critical will be included in this repos-148

itory, including both bugfixes and security fixes. Do note that packages with149

security fixes are immediately published in the security repository for consump-150

tion by end-user and the inclusion in the proposed update repository is purely151

so that they can be included as part of the next point release.152

The set of packages that actually end up in the point release is manually re-153

viewed and selected by the Debian Stable Release maintainers, thus there is no154

guarantee that packages in this repository will be part of the next point release.155

Stable Updates repository156

The stable-updates repository exists for updates proposed to stable which are157

high urgency or time-sensitive and thus should be generally available to users158

before the next point release. Typical examples of packages landing here are159

updates to timezone data, virus scanners and high impact/low risk bugfixes.160

All packages here will also be available in proposed updates and are only allowed161

into this repository on a case-by-case basis.162

As with security updates this repository is meant to be used by all the users of163

a Debian stable release.164

Backports repository165

The backports repository contains packages taken from the next Debian release166

(specifically from the testing suite) and rebuilt against the current Debian stable167

release. Backports allow users to upgrade specific interesting packages to newer168

versions while keeping the remainder of their system running the stable release.169

However, while backports will have seen a minimal amount of testing, the pack-170

ages are provided on an as-is basis with no guarantee of stability. As such it’s171

recommended to only cherry-pick the package one needs from this repository.172

Debian release flow conclusions173

From a purely downstream perspectives there are various interesting aspects in174

this process.175

In the process going towards a release it’s notable that even during the soft and176

hard freeze periods Debian is already a quite stable baseline as such a rebasing177

process for an Apertis product release can start when Debian is in freeze as long178

as there is enough time left before the product release (around 8 to 9 months).179

6

After a Debian release there are clear repositories that a downstream should180

focus upon, namely those in the “stable updates”and “security”repositories, as181

well as updates included in point releases. The “stable proposed updates”can182

mostly be ignored on a day to day basis but gives interesting insights in what183

can be expected from the next point release. Finally the backports repository184

should in general not be used unless a downstream has a high interest in versions185

of a package newer than what is available in the stable release. However, in that186

case extra effort should be put in place to track security issues and other bugfixes187

for that package as Debian only provides it on a best-effort basis without the188

usual guarantees.189

Linux kernel release flow190

Apertis is following the Linux kernel LTS releases to ensure it includes modern191

features and support for recent hardware. As such it’s important to also look192

at the release flow of the Linux kernel itself and its impact. Linux sees a new193

major release about every 2 months, which typically is only supported until the194

next major release happens. However once a year there is a long-term support195

release which is supported for 2 years.196

The following diagram shows the expected timelines for the current and next197

expected Linux long term stable releases.198

Dec
2022

Oct
2023

Nov
2024

~Dec
2025

~Dec
2026

Linux
6.12

Linux
~6.17

Linux
6.1

rel
dev

Linux
6.6 rel

dev

rel
dev

rel
dev

199

Process towards a release200

The kernel stabilisation process has two big phases: after every release there201

is a two week merge window in which all the various changes lined up by the202

various subsystem maintainers are pulled in the main tree. At the end of this two-203

week period the first release-candidate (rc1) is released and the merge window is204

closed. Afterwards only patches fixing bugs and security issues will be integrated,205

with a new release candidate coming out every week.206

Typically 7 or 8 release candidates will be released in each cycle followed by a207

final release, which means a new stable version of Linux release every 9 to 10208

weeks.209

7

Process after a release210

After each Linux release further maintenance is done in the stable git tree. These211

trees will only get further bug and security fixes, with releases being done on212

an as-needed basis. The support time depends on the specific release which fall213

in two categories:214

• normal release, only supported until the next release;215

• long term release, typically supported for two years.216

Currently each last kernel release of the year is expected to be a long term217

release, supported for at least two years after release. Specific releases may be218

provided with longer upstream support depending on industry interest. For219

example the 4.4 kernel is getting a total of 6 years of support mainly due to220

interest from Android. Similarly the Linux 3.16 kernel is also getting a total of221

6 years of support as that was the kernel used by the Debian Jessie release. For222

Linux 4.9 a similar longer cycle is to be expected as that was used in Debian223

Stretch, however that hasn’t been made official thus far and at the time of this224

writing Linux 4.9 will go EOL in January 2019.225

Linux release flow conclusions226

For usage in Apertis product releases only long term releases are suitable. As227

there is a yearly LTS release of Linux with only a 2 year support cycle, it is228

recommended to ensure each yearly release of Apertis has the latest Linux LTS229

support. This ensures both support for recent hardware as well as having a230

reasonable security support window.231

If downstream projects require a longer support period for a specific kernel232

release then it’s recommended to align with other long term support efforts233

instead, depending on requirements.234

Apertis release flow235

The overall goal is for Apertis to do a yearly product release. These releases236

will be named after the year of the stable release, in other words the product237

release targeted at 2024 will be given major version 2024. A product release238

is intended to both be based on the most recent mainline kernel LTS release239

and the current Debian stable release. Since Debian releases roughly once every240

two years, that means that there will typically be two Apertis product releases241

based on a single Debian stable release. With Linux doing an LTS release on a242

yearly basis, each Apertis product release will be based on a different (and then243

current) Linux kernel release.244

To move to a yearly product release cycle the recommendation is to keep the245

current quarterly releases, but rather than treating all the releases equally as246

is today have releases with specific purposes depending on where in the yearly247

cycle the releases are for a specific product release.248

8

The final product release is planned to occur at the end of Q1 every year, both249

to avoid the impact of the major holiday periods (Christmas/new-year and250

European summer) as well as releasing close to the Linux kernel LTS release251

to maximize the use of its support cycle. Once a product release is published,252

it will continue to get updates for bug and security fixes, with a point release253

every quarter for the whole duration of the support period.254

The standard support period for Apertis is 7 quarters. In other words from the255

initial release at the end of Q1 until the end of the next year.256

The various types of releases per quarter (without point releases) would be:257

Quarter Release type Support
Q4 Release N-1 Preview Limited, until the Q1 product release
Q4 Release N Development Limited, until the Q1 development release
Q1 Release N-1 Product Full support, until 1.75 years after release
Q1 Release N Development Limited, until the Q2 development release
Q2 Release N Development Limited, until the Q3 development release
Q3 Release N Development Limited, until the Q4 development release
Q4 Release N Preview Limited, until the Q1 product release
Q4 Release N+1 Development Limited, until the Q1 development release
Q1 Release N Product Full support, until 1.75 years after release
Q1 Release N+1 Development Limited, until the Q2 development release

For each quarter the releases would be (with some examples):258

Quarter N-2 N-1 N N+1 N+2 N+3 v2023 v2024 v2025 v2026 v2027
Q1 .4 .0 dev1 v2023.0 v2024.dev1
Q2 .5 .1 dev2 v2023.1 v2024.dev2
Q3 .6 .2 dev3 v2023.2 v2024.dev3
Q4 .7 .3 pre dev0 v2023.3 v2024.pre v2025.dev0
Q1 .4 .0 dev1 v2023.4 v2024.0 v2025.dev1
Q2 .5 .1 dev2 v2023.5 v2024.1 v2025.dev2
Q3 .6 .2 dev3 v2023.6 v2024.2 v2025.dev3
Q4 .7 .3 pre dev0 v2023.7 v2024.3 v2025.pre v2026.dev0
Q1 .4 .0 dev1 v2024.4 v2025.0 v2026.dev1
Q2 .5 .1 dev2 v2024.5 v2025.1 v2026.dev2
Q3 .6 .2 dev3 v2024.6 v2025.2 v2026.dev3
Q4 .7 .3 pre dev0 v2024.7 v2025.3 v2026.pre v2027.dev0
Q1 .4 .0 dev1 v2025.4 v2026.0 v2027.dev1
Q2 .5 .1 dev2 v2025.5 v2026.1 v2027.dev2
Q3 .6 .2 dev3 v2025.6 v2026.2 v2027.dev3
Q4 .7 .3 pre v2025.7 v2026.3 v2027.pre
Q1 .4 .0 v2026.4 v2027.0

9

Quarter N-2 N-1 N N+1 N+2 N+3 v2023 v2024 v2025 v2026 v2027
Q2 .5 .1 v2026.5 v2027.1
Q3 .6 .2 v2026.6 v2027.2
Q4 .7 .3 v2026.7 v2027.3
Q1 .4 v2027.4
Q2 .5 v2027.5
Q3 .6 v2027.6
Q4 .7 v2027.7

The following diagram shows how this would look for Apertis releases up to 2027:259

Debian 11
"Bullseye"

Debian 12
"Bookworm"

Debian 13
"Trixie"

Release

- 27.7

- 27.6

- 27.5

- 27.4

- 27.3

- 27.2

- 27.1

- 27.0

- 27preview

- 27dev3

- 27dev2

- 27dev1

- 27dev0

Apertis
2027

- 26.7

- 26.6

- 26.5

- 26.4

- 26.3

- 26.2

- 26.1

- 26.0

- 26preview

- 26dev3

- 26dev2

- 26dev1

- 26dev0

Apertis
2026

- 24.7

- 24.6

- 24.5

- 24.4

- 24.3

- 24.2

- 24.1

- 24.0

- 24preview

- 24dev3

- 24dev2

- 24dev1

- 24dev0

Apertis
2024

- 23.7

- 23.6

- 23.5

- 23.4

- 23.3

- 23.2

- 23.1

- 23.0

- 23preview

- 23dev3

- 23dev2

- 23dev1

- 23dev0

Apertis
2023

Linux LTS

Linux LTS

- 25.7

- 25.6

- 25.5

- 25.4

- 25.3

- 25.2

- 25.1

- 25.0

- 25preview

- 25dev3

- 25dev2

- 25dev1

- 25dev0

Apertis
2025

Linux LTS

Linux LTS

Linux LTS

2022 2023 2024 2025 2026 2027

Debian

Debian

Debian

EOL

EOLRelease

260

Further details about the various types of release will be given in the following261

sections.262

Flow up to a product release263

The main flow towards a quarterly release will remain the same as it now, which264

is documented on the Apertis Release schedule2 page. However, depending on265

the type of release the focus may differ.266

2https://www.apertis.org/policies/releases/

10

https://www.apertis.org/policies/releases/
https://www.apertis.org/policies/releases/

Development releases (Q4, Q1, Q2, Q3)267

For a development release, everything is allowed as the main focus is develop-268

ment. These can include bigger changes to the infrastructure as well as to the269

delivered software stack. At the end of every quarter there is an Apertis de-270

velopment release: this ensures that there can be ongoing development of the271

distribution even if the preparation for the next product release has entered a272

stabilisation phase.273

Rebasing on the upcoming stable version of Debian can only be done as part of274

a development release. The rebase can start in a quarter as soon as Debian hits275

the soft freeze stage.276

Development releases are versioned as development number, with numbering start-277

ing from 0. The version of the first development release for the 2024 product278

release would be Apertis 2024 development 0 or optionally shortened to v2024dev0.279

Preview release (Q4)280

The goal of a preview release is to provide a preview of what will be the final281

product release for further testing and validation by downstreams. As such a282

preview release should achieve a high level of stability: this means that during a283

preview release cycle only non-disruptive software or infrastructure updates will284

be allowed. Similarly, new features can only be introduced if they pose a low285

risk on existing functionality and do not have an impact on the overall platform286

stability.287

During the preparation of a preview release extra focus should be given to288

bugfixing and testing.289

One important exception to the above considerations is to be made: preview290

releases should be released with the new Linux kernel LTS (either the final291

release or a release candidate) to ensure the product release will be done with292

the most recent LTS Linux kernel, maximising the overlap with the 2 year stable293

support period offered.294

As there is only one preview release for each product release, the version is the295

major product version followed by preview. For example Apertis 2024 preview,296

which can be shortened to v2024pre.297

Product release (Q1)298

As can be expected the focus of the product release quarter is to deliver a high-299

quality release which can be supported for a longer period. For this release only300

security fixes, bugfixes and updates to the stable kernel release or updates from301

the Debian stable release.302

New features should not be included during this quarter as it’s unlikely there303

will be enough time for them to fully mature.304

11

The major version of the product release is simply the year in which the release305

is to be done. The minor version starts at 0 and is increased for each later point306

release. This means the initial product release for 2024 would be Apertis 2024.0307

or simply shortened to v2024.0.308

Process after a product release309

After a release has been done, for each of them there is an expected support life310

depending on the type of release as outlined above.311

For non-product releases any post-release updates will directly go into the main312

repository for that specific release. Only fixes to high-impact issues will be313

published for non-product releases, everything else will only be available in the314

next release.315

For product releases a setup similar to Debian is to be used to stage updates316

before a new point release is done. The repositories used by Apertis are outlined317

in the following sections.318

Every quarter a release cycle for every supported release is started with the goal319

of publishing a new point release. Before the actual point release is published a320

set of intermediate steps are performed to ensure a reliable process:321

• Soft Feature Freeze: From this point no new features are allowed to the322

release323

• Hard Feature Freeze / Soft Code Freeze: From this point only bug fixing324

is allowed, staged updates are folded into the main repository325

• Release Candidate / Hard Code Freeze: From this point no changes are326

allowed, RC is published for testing327

• Release: Point release is published328

The last point release is a special case since after three months the staged329

updates will get folded but no additional point release is published. The overall330

support period of a product release is thus two years from the .0 release.331

Stable Repository332

This is the main repository with the full released version. This repository only333

gets updated at point releases.334

Point release will be done every three months. All downstreams are expected335

to pull directly from the stable repository.336

For instance, in Apertis v2024 this maps to:337

• the apertis/v2024 git branch in the packaging repositories3338

• the apertis:v2024:{target,development,sdk,non-free} OBS repositories339

• the deb https://repositories.apertis.org/apertis/ v2024 target develop-340

ment sdk non-free APT source341

3https://gitlab.apertis.org/pkg

12

https://gitlab.apertis.org/pkg
https://gitlab.apertis.org/pkg

Once a point release is published, the updates staged in the repositories de-342

scribed below get folded in this repository to make them generally available.343

Security repository344

For security issues a dedicated security repository is used. This repository is345

only used with updated packages including security fixes.346

This repository should be pulled directly by all downstreams and any updates347

rolled out at high priority. Updates from the Debian security repository will348

always be included in this repository.349

For instance, in Apertis v2024 this maps to:350

• the apertis/v2024-security git branch in the packaging repositories4351

• the apertis:v2024:security:{target,development,sdk,non-free} OBS repos-352

itories353

• the deb https://repositories.apertis.org/apertis/ v2024-security target354

development sdk non-free APT source355

Updates repository356

This repository includes updated packages to be included in the next Apertis357

point release. Only packages with high priority bugfixes are allowed into this358

repository. Updated packages from the Debian stable-updates and point releases359

will be automatically included.360

Downstreams are recommended to include this repository but it’s not manda-361

tory.362

For instance, in Apertis v2024 this maps to:363

• the apertis/v2024-updates git branch in the packaging repositories5364

• the apertis:v2024:updates:{target,development,sdk,non-free} OBS reposi-365

tories366

• the deb https://repositories.apertis.org/apertis/ v2024-updates target367

development sdk non-free APT source368

Backports repository369

This repository has backports of packages which are of special interest to down-370

streams but where not suitable for inclusion into the product release.371

Unless specific agreements have been made, the packages available in this repos-372

itory are for experimentation use only and are not supported as part of the373

produce release.374

For instance, in Apertis v2024 this maps to:375

4https://gitlab.apertis.org/pkg
5https://gitlab.apertis.org/pkg

13

https://gitlab.apertis.org/pkg
https://gitlab.apertis.org/pkg
https://gitlab.apertis.org/pkg
https://gitlab.apertis.org/pkg

• the apertis/v2024-backports git branch in the packaging repositories6376

• the apertis:v2024:backports:{target,development,sdk,non-free} OBS377

repositories378

• the deb https://repositories.apertis.org/apertis/ v2024-backports target379

development sdk non-free APT source380

Dependencies between these repositories381

The main repository is standalone, that means it doesn’t depend on any other382

repository (neither security nor updates nor backports). The security repository383

depends only on the main repository, while the updates repository depends on384

both main and security repositories. The backports repository depends on all385

other repositories (main, security and updates).386

Example images387

Apertis includes a big collection of packages which can be used in a variety388

of system use-cases. As it is impossible to test all combinations of packages,389

Apertis provides a set of example images for each type of system which has390

been validated by the Apertis project. While other use-cases can be supported391

there cannot be a strict guarantee that Apertis is fit for purpose for those as it392

hasn’t been validated in that situation.393

Furthermore, as these Apertis images are meant as examples for product use-394

case they can include demonstration quality software, which is not intended nor395

has been validated to form the basis of a product.396

To clarify what is expected to be supported for each Apertis product release397

documentation will be provided to explain what the scope of each example398

image is, which use-cases it validates and which part of the software stack are399

fully supported for product usage.400

A description of the expected release artifacts can be found on the images7 page.401

Apertis release flow conclusions402

The above sections outline a process for Apertis to both generate and support403

yearly product releases. They ensure that Apertis releases are always based on404

recent but mature upstream software. Each product release will include the405

very latest Linux LTS kernel as well as the current Debian stable release.406

What was intentionally not covered is how to manage forward looking devel-407

opment during the non-development cycles as this is separate from the release408

flow. However there is no real blocker for doing development not intended to409

be part of the product release, deliverables can be delivered for instance via the410

backports repository or by other means to be defined further.411

6https://gitlab.apertis.org/pkg
7https://www.apertis.org/policies/images/

14

https://gitlab.apertis.org/pkg
https://www.apertis.org/policies/images/
https://gitlab.apertis.org/pkg
https://www.apertis.org/policies/images/

Combining all the various types of releases, for a single product release 13 dif-412

ferent releases will be done. For example for Apertis 2024 the schedule looks413

like this:414

Quarter Release Name Type
2022Q4 Apertis 2024 development 0 v2024dev0 development
2023Q1 Apertis 2024 development 1 v2024dev1 development
2023Q2 Apertis 2024 development 2 v2024dev2 development
2023Q3 Apertis 2024 development 3 v2024dev3 development
2023Q4 Apertis 2024 preview v2024pre preview
2024Q1 Apertis 2024.0 v2024.0 stable release
2024Q2 Apertis 2024.1 v2024.1 stable point release
2024Q3 Apertis 2024.2 v2024.2 stable point release
2024Q4 Apertis 2024.3 v2024.3 stable point release
2025Q1 Apertis 2024.4 v2024.4 stable point release
2025Q2 Apertis 2024.5 v2024.5 stable point release
2025Q3 Apertis 2024.6 v2024.6 stable point release
2025Q4 Apertis 2024.7 v2024.7 stable point release
2026Q1 end of support for v2024

For projects using Apertis (or its direct downstreams) given this schedule there415

is a rebase window of a year to move to the newer version. Starting from when416

the preview release of the new version is done (for instance, v2025pre in 2024Q4)417

until the .7 stable point release of the old version (for instance, v2024.7), which418

is end of Q4 to end of the next Q4.419

Release flow for the direct downstreams of Aper-420

tis421

The release cycle of the direct downstreams of Apertis is expected to follow the422

same process as that of Apertis. In other words throughout the year the direct423

downstreams of will do two development releases based on top of the Apertis424

development release, one preview release and a final product release.425

It is expected that the respective direct downstream releases will be done within426

a month from the quarterly Apertis release and will be made available to the427

downstreams further down the chain in that time frame.428

For an direct downstream product release it is expected that in addition to429

the stable repository the updates and especially security repository are tracked430

closely, with any updates from Apertis being made available in the direct down-431

stream within a week. A similar time-frame is expected for Apertis point re-432

leases.433

15

Since Apertis will perform the folding of updates and security before each re-434

lease, downstreams will get packages updates in the main repositories during435

the month previous to the release. This will make the folding process for down-436

streams simpler, focused only in the deltas from Apertis they carry.437

Guidelines for product development on top of438

Apertis and its direct downstreams439

To make the best use of Apertis in product development it is recommended to440

take the release timelines of Apertis and its direct downstreams into account441

when creating a product release roadmap. Since Apertis and its direct down-442

streams have a cadence of a new release once a year, users are driven to the same443

cadence by default. Given that the overlap of stable releases for two subsequent444

product releases is three quarters, users have a full year to rebase their work445

once the preview release for the next product release is published.446

The details about the use of Apertis and its direct downstreams will depend447

on the phase of the project, in particular whether it is in the pre-production448

development phase or in the post-production support phase.449

Pre-production guidelines450

The pre-production phase is the phase before a new major version of software451

goes into production. This can either before the product starts its production452

or when a new major software update is planned to be rolled out to products453

already in the field.454

Typically this phase consists of a period of heavy development (potentially in-455

terleaved with short stabilisation periods), followed by a potentially longer final456

stabilisation period before entering production.457

For the final stabilisation phase, the baseline used for Apertis and its direct458

downstreams should be focused on stability. This means either a preview or the459

current product release should be used. Care should be taken to ensure that460

there is still a reasonable window of support for the baseline distribution when461

production is planned to start. After production has started the guidelines for462

post-production support should be taken into account.463

For the initial development phase there are two main options:464

• follow the development releases of Apertis or its direct downstreams;465

• follow the product releases of Apertis or its direct downstreams (switching466

at the preview stage).467

The first option allows the product development to use the very latest Apertis468

features and developments on top of the most recent software baseline which469

will form the basis of the future product release of Apertis or of its direct down-470

stream, while the second option provides a more stable, but older, baseline al-471

16

lowing the product team to focus on their own software stack. These approaches472

can be mixed, for example by starting out early product development on the473

current Apertis (or one of its direct downstreams) development release to take474

advantage of more recent features, but following that baseline when it becomes475

the product release instead of moving to the next cycle of development releases.476

By mixing the approaches in this way the product team has the flexibility of477

choosing the baseline that best fits their priorities at any given time.478

The following diagram shows an example of such a mixed development: devel-479

opment starts on top of the then current Apertis development release and is480

rebased early onto the next development versions of Apertis such that the prod-481

ucts final 9 month freeze before SOP coincides with the product-line release482

of the Apertis it’s based on. If a product is based on a direct downstream of483

Apertis, then the chart would be nearly identical, replacing the Apertis labels484

with the name of the direct downstream.485

24dev0

24dev1

24dev2

24dev3

24pre

24.0

24.1

24.2

24.3

24.4

24.5

24.6

Apertis
2024

'24Q1
'24Q2

'24Q3
'24Q4

'23Q1
'23Q2

'23Q3
'23Q4

'25Q1
'25Q2

'25Q3
'22Q4

25dev0

25dev1

25dev2

25dev3

25pre

25.0

25.1

25.2

25.3

25.4

25.5

25.6

Apertis
2025

'25Q4

'26Q1

'26Q4

'265Q3

'26Q2

PreProduction

sop

Final Freeze

Development

Development

486

Post-production support guidelines487

The post production support phase is the phase where the product is out in the488

market and any software updates are primarily done for the purpose of fixing489

bug and security issues.490

In this phase it’s assumed that the release into the field has been done based on491

a product release of Apertis or of one of its direct downstreams. The product492

team is expected to track Apertis security fixes as they become available through493

the security repository of Apertis or its direct downstream as well as new point494

releases (containing both security and bug fixes).495

It is up to the product team to further select and test these updates for their496

product and schedule software updates that work best for their schedule, with497

the recommendation to update devices in the field as quickly as possible espe-498

cially in the case of high impact security fixes.499

17

When a new release of Apertis or of its direct downstream comes out the prod-500

uct team is expected to update to this new version before the support for the501

previous Apertis release comes to an end. It is typically recommended to start502

the work to rebase on the new version of Apertis or of its direct downstream503

when the preview release becomes available as the focus for Apertis is very much504

on stability at that point.505

The following diagram shows an example of such a flow, where the product506

begins the preparation for deploying an update based on the new Apertis version507

at the time of the preview release and targets deployment in the field when the508

old Apertis release support ends, which gives a window of a full year to do the509

necessary preparation and validation before deploying an update into the field.510

If a product is based on a direct downstream of Apertis, then the chart would511

be nearly identical, replacing the Apertis labels with the name of the direct512

downstream.513

'24Q1
'24Q2

'24Q3
'24Q4

'23Q1
'23Q2

'23Q3
'23Q4

'25Q1
'25Q2

'25Q3
'22Q4 '25Q4

'26Q1

'26Q4

'26Q3

'26Q2

25dev0

25dev1

25dev2

25dev3

25pre

25.0

25.1

25.2

25.3

25.4

25.5

25.6

Apertis
2025

24dev0

24dev1

24dev2

24dev3

24pre

24.0

24.1

24.2

24.3

24.4

24.5

24.6

Apertis
2024

26dev0

26dev1

26dev2

26dev3

26pre

26.0

26.1

26.2

Apertis
2026 26.3

eo
l

preparation deployment

preparation deployment

eo
l

preparation deployment
Product

Product

Product

24.7

25.7

514

Product guideline conclusions515

As can be seen in the previous sections Apertis and its direct downstreams try516

to give product teams flexibility to use Apertis as they see fit for their needs517

within the constraints imposed by the support timelines.518

It should be noted however that these timelines are not set in stone: if there are519

business cases for having specific releases of Apertis or of its direct downstreams520

supported for an extended period then this is in principle possible. However it521

should be noted that Apertis and its direct downstreams in turn have constraints522

from its upstreams to be able to rely on community support, which may limit523

18

the amount of support that can be provided.524

Appendix: Change in release strategy525

This release flow concept is a departure from the initial concept for Apertis,526

which would rebase on every new Ubuntu releases (once every 6 months). This527

resulted in two releases for every Ubuntu version, where in one quarter the528

project would rebase on the new Ubuntu release, and in the following quarter529

it would continue on that baseline with further updates and improvements.530

Conceptually there are two big changes with this new concept:531

• switch to a longer supported distribution release;532

• switch from Ubuntu as a baseline to Debian.533

When the initial concept was set out, Ubuntu would support non-LTS releases534

for 18 month (one year after the next Ubuntu release). Currently however the535

support for non-LTS releases is only 9 months (3 months after the next Ubuntu)536

release), which is simply too short for supporting product usage even if the537

product has a very aggressive timeline.538

This means that to fit the trade-offs/constraints mentioned in the introduction539

a switch has to be made to releases with a longer support term, which in both540

Ubuntu and Debian cases are released every 2 years, with 5 years of support.541

The rationale for switching from Ubuntu as a baseline to Debian has been out-542

lined in more detailed in the “The case for moving to Debian stretch or Ubuntu543

18.04”8 concept document.544

Appendix: Distribution “freshness”545

A side-effect of the switch to distributions with a longer support cycle is that546

there are fewer updates on top of the baseline. As such the software available547

in the distribution can be older than the latest and greatest from upstream or548

more recent distribution releases (for instance, older than what it is available549

in normal Ubuntu releases), which also means that not all the latest features550

might be available.551

This is a consequence from the trade-offs that are being made in the release552

process to best serve users of Apertis and its direct downstreams, stability and553

community support are preferred over having the very latest features. In case554

newer features are required this can either be handled via the backports mech-555

anism if only needed for specific users or, in case of a feature useful to most556

users, including a newer version in the next release of Apertis or of its direct557

downstreams can be considered.558

8https://www.apertis.org/architecture/distribution/case-for-moving-to-debian/

19

https://www.apertis.org/architecture/distribution/case-for-moving-to-debian/
https://www.apertis.org/architecture/distribution/case-for-moving-to-debian/
https://www.apertis.org/architecture/distribution/case-for-moving-to-debian/
https://www.apertis.org/architecture/distribution/case-for-moving-to-debian/

A practical example of this happening is the way the Linux kernel is handled, as559

support for recent hardware devices is considered important for a wide variety560

of users (especially during the early product phases). However this does mean561

a reduced community kernel support timeline when compared to a distribution562

kernel, so in situations where an update is considered, care should be taken to563

evaluate the trade-offs with respect to effort costs.564

Overall, with this release flow the latency for new updates to components from565

a newer distribution is at most two years. This is under the assumption that566

users looking for newer features are still in early development and are using the567

preview releases of Apertis or of its direct downstreams and at that stage not568

yet the product release. Generally this is seen as a reasonable trade-off for most569

components.570

Appendix: Frequently Asked Questions571

What is the effort required to move to a new product re-572

lease?573

While Apertis publishes a product release every year, Debian does a release only574

once every two years: this means that for each Debian release there will be two575

Apertis product releases based on it.576

Moving from an Apertis product release to another based on the same Debian577

release usually does not require considerable effort: since one of the goals of578

Apertis is to minimize the deviation from upstream, the vast majority of pack-579

ages are pulled straight from Debian and the two releases will ship the same580

versions. Only few components are specific to each releases, the main one being581

the kernel due to the Apertis policy of tracking the latest Linux LTS releases.582

Moving to a product release with a different Debian baseline often requires more583

effort since the new baseline brings new major versions of many components and584

in some cases deprecated components may get removed: an example of this is585

the removal of the Python 2 interpreter in Debian Bullseye/Apertis v2022 after586

more than ten years of it being deprecated.587

How often security fixes are made available to users?588

Apertis pulls security updates from Debian with an automated pipeline and589

security fixes are quickly made available in the repositories for the in-progress590

development/preview releases and in the -security repositories for the published591

product releases.592

In addition, the fixes in the -security repositories are folded in the main repos-593

itory right after a point release for that product release is published, to make594

them available to the widest audience.595

This means that users of product releases have two options:596

20

1. a constant stream of the latest security fixes by subscribing to the -597

security repositories;598

2. a quarterly stream of updates that get an additional validation step599

through the QA rounds done for the point releases, by only subscribing600

to the main repositories.601

Subscribing to the -security repositories is strongly recommended in all cases602

since the risk of regressions is minimal thanks to the upstream validation done603

by the Debian project.604

Do packages get updated in a published develop-605

ment/preview release?606

Once development/preview releases are published they are generally regarded607

as immutable, and all new updates are landed in the repositories of the next608

release.609

There are exceptions however, in particular for:610

1. security fixes that address vunerabilities serious enough that are deemed611

worth fixing even in releases only meant for development and not for pro-612

duction613

2. fixes addressing packages that fail to build from sources614

In any case the updates are going to be kept as minimal as possible to minimize615

the chances of introducing regressions. For instance, such updates do not usually616

bump the version of the affected component significantly and in the majority of617

the cases they only involve the addition of a specific patch.618

In general, the impact of each update needs to be evaluated: for instance the619

CVE-2021-442289 Log4J fix required a significant bump of the component’s ver-620

sion, bug given the current marginality of the package in the Apertis ecosystem621

the fix has been landed to all active branches with no further checks. In other622

cases, where the effective impact may be more significant, the Apertis team623

may consider rolling out a new point release (for instance, v2022dev2.1) after624

validating it with a full QA round.625

Do downstream distributions need to perform a folding?626

Apertis will perform the folding of security and updates before each point release,627

saving downstreams of much of the work. However, since downstreams can628

carry their own changes and have their own custom repositories a folding will629

be required.630

Downstreams are encouraged to push changes upstream, which will allow all631

Apertis users and other downstreams to take advantage of the changes, and in632

turn will reduce the delta and maintenance cost.633

9https://nvd.nist.gov/vuln/detail/CVE-2021-44228

21

https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://nvd.nist.gov/vuln/detail/CVE-2021-44228

Do downstream distributions need to perform a branching?634

Apertis branches a new development or preview release as previously described635

to provide a new starting point for the release. This same process should be636

done by downstreams to follow the Apertis release flow.637

22

	Debian release processes
	Process towards a release
	Process after release
	Stable repository
	Security repository
	Stable Proposed Updates repository
	Stable Updates repository
	Backports repository

	Debian release flow conclusions

	Linux kernel release flow
	Process towards a release
	Process after a release
	Linux release flow conclusions

	Apertis release flow
	Flow up to a product release
	Development releases (Q4, Q1, Q2, Q3)
	Preview release (Q4)
	Product release (Q1)

	Process after a product release
	Stable Repository
	Security repository
	Updates repository
	Backports repository
	Dependencies between these repositories

	Example images
	Apertis release flow conclusions

	Release flow for the direct downstreams of Apertis
	Guidelines for product development on top of Apertis and its direct downstreams
	Pre-production guidelines
	Post-production support guidelines
	Product guideline conclusions

	Appendix: Change in release strategy
	Appendix: Distribution “freshness”
	Appendix: Frequently Asked Questions
	What is the effort required to move to a new product release?
	How often security fixes are made available to users?
	Do packages get updated in a published development/preview release?
	Do downstream distributions need to perform a folding?
	Do downstream distributions need to perform a branching?

